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1. Abstract

This paper presents the application of the Boundary
Element Method for nonlinear time-independent problems.
Part of the domain, where the plastic phenomena takes
place is discretized into quadratic,  quadrilateral ,
continuous internal cells, in order to obtain the plastic
strain. The plastic analysis is basically applied to metals.
The Von Mises yield criterion and strain hardening are
used in this analysis. Numerical results are compared with
the solution obtained from the Finite Element Method
(FEM) and relevant references.

Key words: plasticity, boundary element method

2. Resumen (Análisis de elementos de frontera en problemas
elastoplásticos)

Este artículo presenta la aplicación del método de elementos
de frontera a problemas no lineales independientes del
tiempo.  Parte del dominio, especialmente la parte más crítica
donde es más susceptible a la cedencia, en la cual se genera
la plasticidad, es dicretizada con celdas internas cuadriláteras
cuadráticas continuas para obtener la deformación plástica.
El análisis plástico es básicamente aplicado a metales en este
trabajo. El criterio de cedencia de von Mises y el
endurecimiento por deformación son considerados en este
análisis. Resultados numéricos son comparados con
soluciones obtenidas del método de elementos finitos y
referencias.

Palabras clave: plasticidad, elementos de frontera.

3. Introduction

Most of the materials used in engineering have sophisticated
material properties which may depend on stress, time and
temperature. In order to model the complex behaviour of
such materials, stress analysis techniques are developed. These
techniques are necessary to solve the elastic problem but
also go further to model the non-elastic phenomenon such as
plasticity.

For many years problems of stress analysis in industry have
been solved using Finite Difference Method and the Finite
Element Method (FEM). An alternative method to these
domain type methods is the Boundary Element Method
(BEM). Despite this, it still takes considerable time to perform
in a particular plasticity analysis.

During many years the FEM has been used as the main tool
to solve problems in engineering [1]. The domain of the body
is divided into several small sub domains, of quite simple
shape, called finite elements. Any continuous parameter such
as pressure or displacement can be approximated to the actual
behaviour of the solution with trial functions, usually
polynomials. These functions are uniquely defined in terms
of the approximated values of the solution at some nodal
points, inside or on the boundary of each element.

A weighted residual technique is the most popular tool to
assess this approximation, leading to a symmetric system of
equations which involves the unknown values of the
approximated solution at nodal points. Without any doubt,
this method is computationally efficient and during many
years has reached such popularity that a very wide range of
linear and non-linear engineering problems have been solved
with this powerful numerical method [2].

The Boundary Element Method (BEM) is a less mature
technique but has reached a level of development in certain
fields that has become an essential tool for design engineers.
The BEM has many applications also but not as many as
FEM. Nevertheless this method is an effective alternative to
FEM in many important areas of engineering analysis. The
BEM is a relatively new technique for engineering analysis;
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the fundamental can be traced back to mathematical
formulations by Fredholm [3] and Mikhilin [4] in potential
theory and Betti [5], Somigliana [6] and Kupradze [7] in
elasticity. In the context of the BEM, also called Boundary
Integral Equation (BIE) [8]], the formulations are due to
Jaswon [9], Hess and Smith [10], Massonet [11], Rizzo [12]
and Cruse [13]. But perhaps the most significant early
contribution to BEM as an effective numerical technique is
due to the work developed by Lachat [14] and Lachat and
Watson [15]. They developed an isoparametric formulation
similar to the FEM and proved that the BEM can be used as
an efficient tool for solving problems with sophisticated
configurations. As an application example, Urriolagoitia et
al. [16,17] followed a similar approach in order to determine
direction of crack propagation, considering the variation of
the specimen geometry, as well as, different combinations of
biaxial loading applied on the boundary of the specimen as
fundamental parameters.

The reduction of the dimensionality of the problem is one of the
most important attractive features of this technique; in the two-
dimensional case only the boundary of the domain needs to be
discretized and for three-dimensional problems the surface is
discretized into a number of boundary elements over which
polynomial functions, of the type used in finite elements, are
introduced to interpolate the values of the approximated
solution between the nodal points. Following discretization of
the boundary and the evaluation of the relevant integrals, a
matrix system of equations is obtained, which, is fully populated
and non-symmetric, is of much smaller size than the FEM.

Some of the main characteristics of BEM are: i) reduced set
of equations, ii) simple data preparation, iii) semi-infinite or
infinite boundaries need not be accurate modeled, iv) accurate
selective calculation of internal stresses and v) displacements
and great resolution for stress concentration problem. These
features plainly justify the increasing popularity achieved in
recent years. BEM methods can be classified into two groups
indirect and direct formulation.

One of the first successful applications of the BEM to
nonlinear problems in solid mechanics with the formulation
for the time-independent plasticity was due to Swedlow and
Cruse [18]. This was followed by a numerical implementation
by Riccardella [19]. Another formulation for plasticity based
on initial stress is due to Banerjee and Mustoe [20].

Two examples are considered in this paper; the first one is a
perforated aluminum plate with tensile load and the second
one is a thick pressurized cylinder in order to determine the
plastic front.

4. Theoretical concepts

Introduction to Elasto-Plasticity

In any material, there is an elastic range in which the limit is
the yield stress σ

y
. After this limit, when a certain level of

stress has been reached, a plastic deformation occurs. By
considering the case of a body subjected to uniaxial loading
(simple tension or compression test), there are two possible
material responses; elastic-perfect plastic (without hardening)
and elasto-plastic (with hardening) see figure 1. At some point
after the yield stress, consider a further load producing an
increment of stress, dσ which generate a change of strain, dε.
Since the strain can be separated into elastic and plastic parts,
so that

dε = dεe+ dεp                                                                 (1)

After plastic deformation occurs the material has the ability
to endure a greater stress due the hardening, which is presented
in figure 1. After the material has yielded the plastic strain
may increase even if the load is decreased as it was shown by
Urriolagoitia-Sosa et al. [21] and López-Castro et al. [22].

Figure 1 shows that during loading and unloading the
behaviour of the material is different. The loading is done in
an elastic and plastic way but the unloading in an elastic
way.
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Fig. 1. Elasto-Plastic behaviour for a linear strain hardening.
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In linear hardening, during the load, after yield stress in tension,
the material reaches point B in figure 1, dεp and dεe denote the
increment of the plastic and elastic component of the strain
respectively. If the load is completely removed, point C on the
strain axis is reached and the elastic strain at this point is zero
and the increment of  the plastic strain dε

C
p = dε

B
p . In order to

increase the plastic strain it is necessary a stress beyond its
previous value σ

B
, which is known as the subsequent yield

stress and it changes as the plastic strain changes. A yielding
in compression occurs if the load is inverted; at this point this
kind of yielding depends on the type of hardening behaviour.
According to the experiments, the compressive yield stress
changes depending on the previous deformation history. Some
alternative models which describe the strain hardening are:

Isotropic hardening. The subsequent yield stresses in tension
and compression are equals and the yield stress has the same
behaviour. In this model the compressive yield stress does
not change with the previous deformation history.

Cinematic hardening. This type of hardening is said to take
place when the elastic range is preserved during the process. In
other words the material experiences a rigid body motion. This
means the difference between yielding in tension and in
compression is equal to the initial yield stress difference. Such
a hardening model gives rise to the experimentally observed
Bauschinger effect.

Independent hardening (mixed). The behaviour of hardening
is independent in tension and compression. This is the more
general rule.

Elasto-Plastic Stress-Strain Relationship

During any increment of the stress, after the initial yielding,
the material behaviour is divided into elastic and plastic parts.
By considering the case of a uniaxial load with linear
hardening, the total strain is expressed as follows:

                           ε = εe + εp                                              (2)

                       εe  = σ/E                                               (3)

Where E is the modulus of elasticity, εe is the elastic part of
the strain tensor and εp is the plastic part.

Once the applied stress has passed the yield stress, stresses
and strains for loading in tension are related

                         σt = E
T
εe                                                   (4)

From the curve stress-strain in figure 1, it is clear that Eεe can
be replaced for E

T
ε so,

                             σt = E
T
ε + σy                              (5)

Where E
T
 is the tangential modulus of elasticity and equation

(5) is for a level of stress greater than the yield stress. Since
the total strain is divided in the elastic and plastic component
according to (2), equation (5) will be

               σt = E
T
(εe + εp)σ

y
                                                 (6)

From figure 1 it is possible to write the strain-hardening
parameter in terms of increments as

(7)

by substituting                          and after some algebraic steps it

is possible to obtain the hardening as

(8)

The final result for the stress after yielding is

               σt = H´εp + σy                                                 (9)

where H´ can be explained as the slope of the strain-hardening
part of the stress-strain curve after removal of the elastic strain
component. The term dσ can be interpreted as the stress
increment necessary to cause the strain increment dεp.

Inside the plastic range to start the yielding it is necessary to go
through the yield surface. There are two hypotheses to
compute this limit: the strain hardening and the work
hardening. The strain hardening assumes the hardening
depends on plastic deformation. The work hardening supposes
that the yield surface depends only on the total plastic work
and is a function of a hardening parameter h, which for linear
hardening is equivalent to H´, that is

h = Wp =     σdεp                                (10)

which is called total dissipation of the energy and represents the
total energy exchange that has occurred in the permanent
deformation process, and is often used to characterize hardening.
This equation geometrically represents the area below the stress-
strain curve corresponding to the plastic component. Hence

σ
t
(h) =  σ

t
     σdεp                                                     (11)

H´ =         =
dσ
dεp

dσ
dε − dεp

dεe =
dσ
E

H´ =
E

T

1 − E
T

E

∫

∫σ
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The yield function for this case can be written as

     f (σ,h) = F(σ) − σ
t
(h) = 0                            (12)

Where σ is the current stress, σ
t
 is the current yield stress and

H´ is the hardening parameter which governs the expansion
of the yield stress.

The von Mises yield criterion

This criterion states that a material will yield when the
deviatoric stress tensor J reaches some critical value. Since
only the deviatoric stress tensor contributes to plasticity, the
yield stress can be written in terms of the invariants of the
state of stresses J

2 
and J

3
.

In order to define J
2 

and J
3
 it is necessary to compute the

mean normal stress as:

(13)

where σ
1
, σ

2 
and

 
σ

3
 are the principal stresses. The principal

state of stress can be formed by the superposition of two
principal stress states. The first one is the mean normal stress
and the second one represents the deviation of the original
state of stress. This decomposition is

                             σ
ij
 = σ

m
 + S

ij
                                (14)

where σ
ij
 is the original state of stress and S

ij
 is the deviation

or deviatoric stress of the original state.

The invariants J
2 

and J
3 

can be written in terms of the
deviatoric stresses as

(15)

and

(16)

therefore the yield function for multiaxial stresses state, which
is a more general function, is

  f (J
2
,J

3
,h) = F(σ

ij
) − σ

t
(h) = 0                       (17)

This criterion, von Mises, does not depend on J
3
, only the

second invariant of stress deviations, J
2
, contributes to

plasticity. Thus equation (17) can be rewritten as:
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(18)

In terms of loading it is possible to define the yield function.
The incremental change in the yield function due to an
incremental stress change is

(19)

In this equation             is the rate of change of the yield sur-

face with respect to the principal stresses direction and dσ
ij
 is

the magnitude of the increment of the stress.

If
dσ

ij 
= 0, the case is perfectly plastic and the stress point

remains on the yield surface
dσ

ij 
< 0, an elastic unloading takes place and the stress

point returns inside the yield surface
dσ

ij 
> 0, there is a linear strain hardening, a plastic

deformation occurs and the stress point grows
beyond the yield surface.

Prandtl Reuss Equations

In order to derive the relationship between the plastic strain
component and the stress increment it is convenient to assume
that the plastic strain increment is proportional to the
variation of the stress, so that

(20)

This equation is called the normality condition because

            is a vector directed normal to the yield surface at the

stress point, see figure 2, and dλ  is a proportionality constant
termed plastic multiplier which may vary throughout the
loading history.

The equation (20) is named flow rule or plastic flow equation
which involves the magnitude and direction of the
components of  dεp.

By relating the von Mises criterion and the flow rule, the Prandtl
Reuus equations are obtained and these can be written as

(21)

σ
m
 =

σ
1
+ σ

2
+ σ

3

3

J
2
 =        S

ij 
S

ij

1
2

J
3
 =        S

ij 
S

ij
 S

ij

1
3

 f (J
2
,h) =           − σ

t
(h) = 03 2J

( )ijdf σ =
ij

f

σ∂
∂

ijdσ

ij

f

σ∂
∂

εd p = λ
σ

d
f

ij∂
∂

σ
f

ij∂
∂

εd p = λ
σ

d
f

ij∂
∂ λdSij=
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Equivalent Stress and Plastic Strain

Since the material properties such as the hardening parameters
and the yield stress are obtained from uniaxial loading tests,
it is necessary to state a correlation between them and
multiaxial stress state. These can be through the equivalent
quantities namely: the equivalent or effective stress. The
equivalent or effective stress can be defined as

(22)

and from the dissipation total of the energy it is possible to
obtain the plastic deformation equivalent as

(23)

by expressing the Prandtl Reuss equations in terms of σ
eq

 and
dεp  we have

(24)

In order to solve an elasto-plastic problem the integration
over the loading history is required. Since the equations above
are of an incremental nature involving plastic strain related
to increments of stress or strain, are the necessary functions to
solve elasto-plastic problems.

Total Strains Related to Prandtl Reuss Equations

It is possible to relate the Prandtl Reuss equations with a new
variable called total strain, in order to compute the plastic
strain increments. The procedure can be as follows: let us say
we have reached a given state of stresses and accumulated
plastic strain in some point of the loading path. By increasing
the load a small amount there is an additional plastic strain
produced and the total strain is given by

(25)

where ε
ij

e is the elastic part of the total strain with the load
increment, ε

ij
p is the plastic strain without the load increment

and ∆ε
ij

p is the plastic strain increment produced by the
increment of the load.

By substituting the Hooke's law into elastic strain component,
the modified total strain can be written as

(26)

The Prandtl Reuss equation in terms of the increments ∆ε
ij

p

and ∆λ can be modified as

(27)

It is convenient to use equivalent quantities, in order to write
the modified total strain in these terms, which is

(28)

A very important elasto-plastic relationship between total
strain and the increment of the plastic strain is

(29)

where G is the shear modulus and H´
i-1

 is the strain hardening
or plastic modulus calculated before the load increment. The
equation above computes the increment of the plastic
deformation for every step in the incremental loading process.

5. Methodology
Elastoplastic formulation for BEM

Plasticity is considered a time-independent phenomenon, but
the equations are associated to a loading factor which is like a

Fig. 2. Vector directed normal to the yield surface.
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time parameter. Because of this, the rate notation is used in
this work. The rates used here symbolize the current value of
the variable and they have nothing to do with the derivative
with respect to time or space, these rates are the derivative with
respect to a loading factor.

The equilibrium conditions that must be satisfied on the
domain, can be represented in terms of rates as follows

(30)

and on the boundary

(31)

where b
j
 are the body forces and η

j
 are the components of the

outward normal to the boundary.

In terms of displacements Navier's equations for elastoplasticity
can be developed as in elasticity, so the governing differential
equations of the problem are obtained, but now the rate form
of the equations instead. The substitution of the relationship
between the stress and the strain rates in terms of displacements
into the equilibrium equation gives

(32)

to obtain

(33)

the equation (32) is for internal points, but boundary
conditions must be also satisfied. The boundary conditions
in terms of rates are; for displacements u

i
 = u

i
 and for tractions

t
i
 = t

i
 and the equation representing the traction boundary

conditions is,

(34)

to obtain

(35)

(36)

These equations (34), (35) and (36) are for three dimensional
problems. In order to work with two dimensional problems
for the plane stress state it is necessary to remove the strain in
z direction, so ε´

33
= 0.

So far the nonlinear problem has been analyzed, which means
that it is not possible to solve the resulting governing
equations directly like in elasticity. It is possible to solve the
nonlinear elastoplastic problem by using a method which
involves essentially the solution of an elastic problem in
each iteration, this method is called successive elastic solution
and it is used in this work.

Integrating by parts, the integral involving the symmetry of
Hooke’s law in the domain Ω´ without the integration of the
initial strain term, the following expression is obtained:

(37)

The equilibrium equations and traction definition can be
substituted into equation above to obtain

(38)

Where u
i
, t

i
, σ

ij 
y ε

ij
 are the displacement, traction, stress and

strain rates respectively which belong to the domain Ω
enclosing Ω´. This leads to the following boundary integral
representation of the boundary displacements when the initial
strain approach for the solution of elastoplastic problems

(39)

In a similar way, the boundary integral equation of the internal
stresses is expressed by

(40)
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Where
     is a Cauchy integral, S

ij
 are terms containing the

derivative of the displacements and tractions, f
ij
 is the free

term and Σ
ij
 is the fundamental solution for the domain.

The solution of Navier's differential equation through the
use of the Galerking vector it is called the fundamental
solution for a unit force point applied to the body at point d.

The displacement and tractions fundamental solutions for
the displacement boundary equation in the two-dimensional
planes are

(41)

(42)

(43)

Numerical Integration

The domain Ω
Y
 is divided in N

C
 cells as follows

(44)

The plastic terms for the strain and stress rate tensors are
given, at every cell Ω

n
, by

(45)

(46)

where n
c
 is the number of nodes in the cell, N

C
 is the number of

cells and Ψ
L
 are the shape functions. The numerical expression

for the displacement on the boundary is

(47)
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The terms T, U and σ in this equation, are sub matrices
containing the fundamental solution. N

el
 is the number of

integration elements. Similarly to the boundary, the
discretized expression for the domain stresses can be obtained

(48)

The quantities D, S and Σ are sub matrices containing the
derivative of the fundamental solution and Ψ are the shape
functions corresponding to the boundary elements and cells
respectively.

6. Results

Benchmark Problems

To outline the applicability of the formulation described in
the previous sections some examples were run in a Fortran
code written by Leitao and the results have been compared
with other references and (FEM).

The Perforated Plate

A perforated and aluminum plate is presented in this first
problem, its geometry is presented in Figure 3. The boundary
of the problem is discretized with quadratic elements and the
domain with interior quadratic cells. The problem has been
analyzed experimentally by Theocaris and Marketos [23].
The material is considered with linear hardening and has the
following properties: Young's Modulus E = 7 000 kg/mm²,
Poisson's ratio v = 0.2, Hardening Coefficient or Plastic
Modulus H´ = 224 kg/mm², and the Yield Stress σ

y 
= 24.3 kg/

mm². The Von Mises Yield Criterion was used in all the
problems.

Figure 5 presents the results for the equivalent strains (in
every step of the load), normalized with respect to the yield
stress, at root of plate (point of maximum stress). Here E is the
modulus of elasticity and λ is the load factor. It can be seen
the convergence of these curves for different increments of
the load factor. Figure 6 exhibits the results for variation of the
mean stress, normalized with the yield stress, at the net section
of the plate. In this graphic, r is the radius of the hole and x is
the distance to every node at the net section. The results are
compared to the ones obtained with FEM and the
experimental [23].
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Thick cylinder

The second problem is a thick cylinder which investigates the
plane strain expansion subjected to internal pressure. The
geometry of a quarter of the cylinder is represented in Figure 4.
This part of the cylinder is dicretized into 18 quadratic
boundary elements and 24 quadrilateral quadratic internal cells.

The plate has the following material characteristics: a = 50mm,

E = 120Gpa,  H´ = 0.3, H´ = 0, σ
y
 = 240 Mpa,

The von Mises yield criterion was applied.

Figure 7 shows the behaviour of the displacement for different
loads in a node located at the outer surface of the cylinder.
U(b) is the x displacement for every applied load, a is the
internal radius and p is the applied load. The outer surface
displacements for the plastic front r'=1.6a were calculated
and plotted against the load in this Figure 8. After applying
internal pressure, the elastic-plastic interface is obtained with

Fig. 4. Geometry, mesh and boundary conditions for a
quarter cylinder under pressure.

Fig. 3. Geometry and boundary conditions for a
perforated plate.

Fig. 5. Development of the deformation with the load factor.

.
3

Mpak yσ
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Fig. 6. Stress variation in y direction for the net section
of the plate.
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BEM which compared with FEM results have good
agreement, see figure 8.

7. Conclusions

Two-dimensional elastoplastic analysis has been carried out
applying the BEM. An initial strain approach with loading
steps was applied in order to execute the non-linar analysis.
Successful applications of the BEM are reported here. It was
found that the biggest difference in the results compared with
the experimental was 3%, but compared with FEM was 1%.
The finite element mesh used here was 3 times bigger than
that boundary element mesh and this means that it was more
computational time in the case of FEM. The BEM compared
with the FEM and experimental solutions presents very
accurate results which makes this method a very promising
tool to analyze nonlinear problems.
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