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1. Abstract

This paper presents a rotor resistance estimator based on an
artificial neural network (ANN) used in the indirect vector
control (IVC) of an induction motor (IM). Attention is focused
on the dynamic performance of ANN rotor resistance
estimator, which gives superior performance over the fuzzy
logic based rotor resistance estimator reported in technical
literature. The simulation was done using a 1.5 hp induction
motor. The same ANN rotor resistance estimator was proved
with other IM having different rated powers. The use of the
same ANN was possible because the scaling and descaling
(normalization) of the input and output of ANN was property
done for each motor. The ANN training was done offline using
the Levenberg-Marquardt algorithm. The neural network is a
three-layer network; the first layer has fourteen neurons (or
nodes), the hidden layer has five neurons and the output
layer has only one neuron because the unique output signal
is the rotor resistance value.

Key words: induction motor, vector control, rotor resistance
estimation, artificial neural network.

2. Resumen (Uso de una red neuronal artificial como
estimador de la resistencia del rotor en el control vectorial
indirecto del motor de inducción)

En este trabajo se presenta una red neuronal artificial (RNA)
para estimar la resistencia del rotor, la cual se usa en el
control vectorial indirecto (CVI) del motor de inducción
(MI). La atención se enfoca en el desempeño dinámico del
estimador de la resistencia del rotor basado en la RNA, que
proporciona un mejor desempeño que el estimador de la
resistencia del rotor basado en un controlador de lógica
difusa el cual se reporta en la literatura. La simulación se
realizó usando un motor de 1.5 hp. El mismo estimador de
la resistencia del rotor basado en RNA se probó con otros
MI los cuales tienen diferentes potencias. El uso de la misma
RNA fue posible debido a la normalización de las entradas
y salidas de la red, lo cual se realizó para cada motor. El
entrenamiento de la RNA fue hecho fuera de línea usando
el algoritmo de retropropagación de Levenberg-Marquardt.
La RNA es una red de tres capas: la primera capa tiene catorce
neuronas (o nodos), la capa oculta tiene cinco neuronas y la
capa de salida tiene solamente una neurona debido a que la
única señal de salida es el valor de la resistencia del rotor.

Palabras clave: motor de inducción, control vectorial,
estimación de la resistencia del rotor, red neuronal artificial.

3. Introduction

Vector control or field-oriented control is the most popular
method of obtaining high performance in induction motor
drives. There are essentially two general methods of vector
control. One called the direct or feedback method, and the
other, the indirect or feedforward method. Indirect vector-
controlled (IVC) induction motor (IM) drives used in high-
performance systems are very popular in industrial
applications due to their relative simple configuration, as
compared to the direct method which requires flux and torque
estimators [1]-[2]. IVC eliminates the need for a flux model
but requires an accurate measurement of shaft position in
order to determine the precise location of the rotor flux space
vector or phasor. In an IVC induction motor drive, the flux,
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torque, and slip commands are calculated from the IM
variables based on machine's parameters. It is desirable that
these parameters match the actual parameters of the machine
at all operating conditions to achieve decoupling control of
the machine. The control performance is thus sensitive to the
system parameters, in particular to the rotor resistance which
changes significantly with temperature and skin effect. The
estimation of rotor resistance is done in order to update its
value into the control and keep the IVC tuned.

The estimation of rotor resistance in an IVC induction motor
drive has been subject of several research works [3]-[7].
Despite all these efforts, rotor resistance estimation remains a
difficult problem. In this paper, a rotor resistance estimator
based on artificial neural networks (ANN) is presented. The
ANN simulation results are compared with the ones  obtained
by a fuzzy logic estimator presented in the literature. The
effectiveness of the proposed rotor resistance estimator for a
1.5 hp IM is then demonstrated by simulation. The use of the
ANN rotor estimation for other rated power IM is also shown.

4. IVC using an ANN rotor resistance estimator

Figure 1 shows IVC scheme with an ANN rotor resistance
estimator. The implementation of IVC is based in the
following equations [2]:

(1)

(2)

(3)

where r´
r
, L´

r
, L

m
 are the rotor resistance and the rotor and the

magnetizing inductances respectively; T *
 
 , Ψ´e* are the electro-

magnetic torque and rotor flux reference values respectively,
ie*

ds
, ie*

qs
 are the reference values of stator current d-q

components in the synchronous reference frame; P is the
number of pole pairs; ω*

2
, ω

e
, ω

r
  are the slip (reference value),

synchronous and rotor frequency respectively and p is the
Laplace operator.

4.1. ANN rotor resistance estimator

The rotor resistance estimator shown in figure 1 is described
in more detailed in figure 2. As it is observed in this figure,
the ANN has fourteen inputs because each one of the seven
input variables is entered to ANN together with a one-step
time delayed variable value.

Fig. 1. Indirect vector-controlled IM drive with an ANN rotor resistance estimator.
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Figure 3 shows the training method of the ANN. The input/
output data patterns were generated from a system model
based on fuzzy logic [5], [8]-[9]. The training was done
considering both the starting and steady state operating
condition of IM vector control. Three different values of rotor
resistances were employed during the training procedure. The
inputs of ANN rotor resistance estimator are: stator voltages
and currents components in synchronous reference frame,
reference stator flux, d-axis component stator reference
current and synchronous electrical speed. Besides these seven
inputs and seven delayed inputs were also considered.

The neuronal network is a three-layer network; the first layer
has fourteen neurons (or nodes), the hidden layer has five
neurons and the output layer has only one neuron because
the unique output signal is the rotor resistance value. The
training procedure used was the back propagation algorithm
and it was carried on using the Matlab/Simulink package.
The input/output example data patterns are gathered from
the simulated system because a system model is available as
it can be seen in the top side of the figure 3. The network is
initialized with random positive and negative weights to
avoid saturation before training starts. With one input pattern,
the output is calculated and compared with the desired output
pattern. The weights are then changed until the error between
the calculated pattern and the desired pattern is very small
and acceptable. A similar training is done with all the patterns,
in order to make them match. At this point, the network is
said to have been trained satisfactorily.

Fig. 2. Input variables in ANN rotor resistance estimator.

4.2. System model based on fuzzy logic

Figure 4 shows the system model used in the training
procedure of ANN. The difference between the functions

(4)

(5)

reflects the variation of rotor resistance [5],[8],[9]. The superscript
* means reference values instead of measured values.

The system model shown in figure 4 is used in [9] as rotor
resistance estimator. In the present paper this scheme is used as
model in the training procedure of an ANN. The simulating
results show that the rotor resistance based on ANN has a better
dynamic performance than the rotor resistance estimator shown
in [9] (figure 4) even when different rated power of IM are used
with the same ANN estimator. In this case only one training

Fig. 3. Training scheme of the ANN rotor resistance
estimator.
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procedure was needed. The use of the same ANN was possible
for different motors because the scaling and descaling
(normalization) of the ANN input and output was properly
done for each motor. The error E

F
(k) between F

est
 and F

act
 and

its time variation ∆E
F
(k) are then calculated as:

          E
F
 (k) = F

est
(k) − F

act
(k)                           (6)

         ∆E
F
 (k) = E

F
(k) − E

F
(k − 1)                           (7)

These variables are used as input for the estimator based on
fuzzy logic. The internal structure of the fuzzy logic rotor
resistance estimator is chosen similar to that of a fuzzy logic
controller, which consists of three stages: fuzzification,
inference, and defuzzification. The ε

F 
(k) and ∆ε

F 
(k)

fuzzification stage inputs signals are per unit (p.u.) signals
computed from the actual E

F
(k) and ∆E

F
(k) by dividing them

by the respective gain factors k
E
 and ∆k

E
. The crisp variables

ε
F 

(k) and ∆ε
F 

(k) are converted into fuzzy variables ε
F
 and

∆ε
F 

using triangular membership functions.

In the second stage of the estimator, variables ε
F 
(k) and ∆ε

F 
(k)

are processed by an inference engine (block FIS in Fig. 4)
that executes 49 rules (7x7) as shown in table 1, where NL,
NM, NS, ZE, PS, PM, PL correspond to Negative Large,
Negative Medium, Negative short, Zero, Positive Short,
Positive Medium, and Positive Large respectively.

In the defuzzification stage, a crisp value for the output va-
riable ∆r

r
(k) is obtained by the height method. The

calculated value of the incremental resistance ∆R
r
(k) is then

obtained by multiplying ∆r
r
(k) by the gain factor k∆r

. The

value of estimated rotor resistance is then obtained by
integrating the output signal:

     r´
r(est)

 = R
r
(k − 1) + k∆r

∆r
r
(k)                      (8)

Note that the rated value of rotor resistance is taken as inicial
value for this integral.

The estimate valor r´r(est) is used in the slip calculator (equation
3) and rotor flux (d-component stator current) estimator to
ensure the correct field orientation operation of the drive.

5. Simulation results

The simulation was done using the Matlab/Simulink packa-
ge. Figure 5 shows the simulated transient response of both
fuzzy logic based and ANN based rotor resistance estimator

Fig. 4. System model based on fuzzy logic.

Table 1. Rule base for rotor resistance determination.
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Fig. 5. Simulation transient response of fuzzy logic based and ANN based rotor resistance estimator for a 20 hp rated power
Induction Motor.
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using 1.5 hp rated power motor drive (see appendix). The
transient variation of reference and actual speed, and
electromagnetic and load torque are shown in the figures 5
(a) and (b) respectively. Figures 5 (c), (e), (g) and (i) show the
rotor flux responses when speed and torque vary as they are
shown in figure 5 (a) and (b). The responses of fuzzy logic
based and ANN based rotor resistance estimator for keeping
the actual rotor resistance constant are observed in the fig-

ures 5 (d) and (f) respectively. The response of both estimators,
when the actual rotor resistance varies, is shown in figures 5
(h) and (j). Regardless the ANN was training for the 1.5 hp
rated power IM using the rotor resistance fuzzy logic based
estimator as system model, the reached performance of ANN
rotor resistance estimator is much better than fuzzy logic
based estimator as it can be observed in figure 5. Figure 5
shows the influence of rotor resistance estimation on the IVC
performance (see rotor flux response); from this figure it is

Fig. 6. Simulation transient response of ANN based rotor
resistance estimator for a 100 hp rated power Induction

Motor.
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Fig. 7. Simulation transient response of ANN based rotor
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clear that when the estimation of rotor resistance is improved,
the vector control detuning due to rotor resistance mismatch
is almost eliminated.

Figure 6 shows the transient responses of IVC and ANN based
rotor resistance estimator using 20 hp rated power MI (see
appendix). The same ANN can be used in the rotor resistance
estimator by properly changing the scaling and descaling
(normalization) of the input and output of ANN. As it is
observed in this figure, an excellent performance of rotor
resistance estimator is obtained regardless that a different
motor is used. This means that the ANN has a good
generalization behavior. Figure 7 shows the steady-state ANN
rotor resistance estimation response considering a 5 hp rated
power IM drive (see appendix). In figure 7(a) rated speed and
electromagnetic torque is considered. In figure 7(b) the rotor
speeds is kept constant and equal to rated rotor speed, while
load torque varies in the same rate shown in figure 5(b). The
estimation of rotor resistance is lost at 9.3 s, when the load
torque varies from zero to rated value instantaneously. Fig-
ure 7(c) shows the response when the electromagnetic torque
is equal to its rated value and the rotor speed varies as in
figure 5(a). In figure 7(d) the rotor speed and electromagnetic
torque varies at the same time, again the estimation fails at
9.3 s when the load torque varies from zero to rated value.

6. Conclusions

This paper has presented an ANN based rotor resistance
estimator used to update its value in indirect-vector control
of induction motor drives. Based on obtained results, the
proposed estimator has much better dynamic performance
than fuzzy based rotor resistance estimator presented in the
technical literature though the training of ANN was done
using this fuzzy based estimator as system model. The
obtained simulation results show that the ANN based
estimator can be extended to other IM getting an acceptable
performance, even in dynamic conditions.

Appendix
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20 hp Induction motor parameters:
. 20 hp . r

s
 = 0.1062 Ω

. 60 Hz . r
r
' = 0.0764 Ω

. 220 V . x
m
 = 5.834 Ω

. 1750 rpm . x
ls
 = x

lr
 = 0.2145 Ω

. J = 2.8 kgm2

100 hp Induction motor parameters:
. 100 hp . r

s
 = 0.0425 Ω

. 60 Hz . r
r
' = 0.0425 Ω

. 460 V . x
m
 = 8.51 Ω

. 4 poles . x
ls
 = x

lr
 = 0.284 Ω

. J = 2.0 kgm2

5 hp Induction motor parameters:
. 5 hp . r

s
 = 0.531 Ω

. 60 Hz . r
r
' = 0.408 Ω

. 230 V . x
m
 = 31.931 Ω

. 4 poles . x
ls
 = x

lr
 = 0.95 Ω

. J = 0.1 kgm2
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