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1. Abstract

The dynamic features of the LPC-Cepstral coefficients (delta
and double-delta cepstral) can be used to improve the per-
formance of a Speaker Recognition System (SRS), because
the delta and double-delta represent the derivative of the
LPC-Cepstral coefficients with respect to the time (speed
and acceleration respectively), allowing that the speaker
features become less sensitive to channel and environment
distortion.  Taking this fact in account, this paper presents
an analysis of SRS performance using feature vectors
obtained from delta and double-delta LPC-Cepstral
coefficients that complements a previously published paper.
The evaluation results show that the dynamic features
improve the performance of speaker recognition system
compared with the baseline SRS which use only the LPC-
cepstral coefficients.

Key words: Speaker recognition, LPC-Cepstral, Delta LPC-
Cepstral, Double-delta LPC-Cepstral, GMM

2. Resumen (Evaluación del funcionamiento de sistemas de
reconocimiento de hablante basados en GMM usando
rasgos dinámicos)

Las características dinámicas de los coeficientes LPC-
Cepstral (delta y doble delta cepstral) pueden ser usados
para mejorar el funcionamiento de un sistema de
reconocimiento de hablante, debido a que los coeficientes
delta y doble delta representan la derivada con respecto al
tiempo de los coeficientes LPC-Cepstral (velocidad y
aceleración), lo que permite reducir la sensibilidad de los
coeficientes LPC-Cepstral a variaciones del canal.  Tomando
esto en consideración, en este artículo se presenta un análisis
del funcionamiento de un sistema de reconocimiento de
hablante usando los coeficientes delta y doble delta de los
parámetros LPC-Cepstral, que complementa un artículo
publicado previamente por los autores.  Los resultados
obtenidos por simulación muestran que usando estos
vectores característicos, el funcionamiento del sistema
mejora en comparación con el istema convencional.

Palabras clave: Reconocimiento de hablante, LPC-Cepstral, Delta
LPC-Cepstral, Doble-delta LPC-Cepstral, GMM

3. Introduction

One of the main problems of most Automatic Speaker
Recognition Systems (ASRS) is the large degradation of
system performance when it is required to operate with speech
signals different from those used during the training intervals,
i.e. open test.  This degradation is due to, among several other
facts to, differences on the acoustic conditions such as: noisy
telephone lines, environment variations, different
microphones, etc. that the system confronts during the training
and testing stages.

Several studies show that the SRS archive good recognition
performance if the conditions during training are similar to those
during the testing [7], [9], [11].  However, one of the most attractive
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applications of the SRS is the long distance speaker identification
by using some kind of telecommunication system such as the
telephone one in which the communication channel may changes
during different time accesses to the system, such as different
calls.  A difficulty in this case is the fact that the data for training
is only a small representation of all the acoustic conditions that
the system can met during its operation. Thus, several researchers
have proposed the use of more than one speaker feature to obtain
a better speaker representation [1], [2] while others intend to
suppress those feature variations [11].  Typically, compared with
the use of channel normalization techniques such as Cepstral
Mean Normalization (CMN) and RASTA filtering, the CMN has
shown to be more effective to compensate the variations of the
communication channel and to reduce the distortion effects
produced for the noise environment [1], [3], [4], because the
features derived from the speech spectrum have proven to
perform fairly good in most in SRS.

All the techniques used to enhance the speech spectrum try to
reduce the distortions introduced in the speech signal by the
environment and communication channel, however when a large
spectral degradation is present, the speech spectrum can not
be enough enhanced. To reduce this problem, dynamic features
of the LPC-cepstral coefficients such as the delta and double-
delta cepstral coefficients can be used because the delta features
are less affected by the channel and environment effects. These
dynamic features have been widely used in speech recognition
application where have played important roles in the syllable
and phoneme perception; and then they can be expected to
effectively select the word candidates in a large vocabulary
recognition [5], [6]. Taking these facts in account we can develop
a robust SRS by enhancing the speaker feature vector using
delta and double-delta to analyze the improvement in the
accuracy of the speaker recognition system that can be obtained
using these features as compare with the conventional system
using the LPC-Cepstral coefficients.

Fig. 1. Proposed speaker recognition system.

4. Development

4.1 Speaker Recognition System

A general speaker recognition system, shown in Fig 1, consists
mainly, of three stages: the feature extraction stage, where
appropriate information is estimated in a suitable form and
size, from the speech signal to obtain a good representation
of the speaker features, and the classifier stage, where the
speaker models are adapted using the feature vectors, and the
decision stage, where the recognition decision is taken.

The SRS system under analysis firstly extracts the features
vector from the speaker voice. To this end, firstly estimates
the first 16 LPC-Cepstral coefficients using only the voiced
parts of speech signals.  Then using the estimated LPC-Cepstral
coefficients, the dynamic features are estimated to enhance
the speaker features vector. Next the estimated dynamical
features vector is feed to a Gaussian Mixture Model, GMM,
which is used to obtain a representative model for each speaker.
In a previous research [7], we developed a speaker recognition
system using LPC-Cepstral features vector extracted from the
whole speech signal that provides a good performance in
closed test. However this SRS can be improved taking in
account that the voiced part of the speech signal contains the
main information relative to the speaker identity [8], [9], [11].
For this reason in this SRS the features vector will be derived
from the LPC-cepstral extracted only from the voiced part
speech signal.

4.1.1 Voiced Part Detection

The voiced part detection has a very important roll in the speaker
recognition systems because it contains the main characteristics
of speech signal, and then suitable feature vectors can be
extracted from them. To this end, firstly the pitch period is
estimated, using the autocorrelation method [9], because it is
well known that in a phrase, the vowels belong to voiced part
and the pitch always appears where vowels exist [2]. Thus,
suitable voiced part detection can be carried out using the
following steps: 1) The speech signal is segmented in
overlapping frames, each one of 30ms length with 20 ms
overlapping. 2) Each frame is then multiplied by a Hamming
window of 240 samples assuming a sampling rate of a sampling
rate of 8KHz. 3) The windowed frame is processed using the
center clipper method [10] to reduce the noise influence intrinsic
within of the signal. 4) Next the autocorrelation of each
processed frame is computed. 5) Finally the pitch period, given
as the distance between the first and second pick of the
autocorrelation function, is estimated using a dynamic threshold.
6) Finally, using the estimated pitch period, the voiced segments
are determined [2], [9].
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4.1.2. Estimation of LPC-Cepstral Parameters

The features extracted from the speech signal spectrum have
shown to provide better performances in the speaker
recognition system, specially the LPC-Cepstral, because these
have proved to increase the robustness of the speaker
recognition systems reducing the problem of speech signal
distortion introduced by the communication channel [7]. The
computation of the LPC-Cepstral is relatively simple since they
can be obtained using a simple recursion after the Linear
Prediction Coefficients (LPC) was estimated as follows [7]:

(1)

where cn is the nth LPC-Cepstral coefficient, ai are the linear
prediction coefficients which are obtained by Levinson Durbin
algorithm. In this application, 16 LPC-Cepstral coefficients were
extracted in each frame.

4.1.3. Dynamic Features

The dynamic spectral features, or simply dynamic feature,
contain information that complements the instantaneous
spectrum information provided by the static features, such as
the LPC-Cepstral coefficients [6]. Widely used dynamic
features are the Delta Cepstra and Double-delta Cepstra which
represent the derivatives of the time trajectories of the LPC
Cepstral coefficients, i. e. speed and acceleration respectively.
The delta Cepstral feature vector is then a linear regression of
the LPC-Cepstral coefficients which can be estimated as
follows

(2)

where d
t
 is the delta feature at time t, C

t
 is the LPC-Cepstral

feature and W  is the window size. Because the eq.(2) relies
on the past and future parameter values, some modification
is needed at the beginning and at the end of the feature vector
as shown eqs. (3) and (4)
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The double-delta Cepstra,, or acceleration, feature vector can
be obtained by applying the same eqs.(2) and (3) substituting
now to delta Cepstra feature d

t.
.

4.1.4. Gaussian Mixture Model (GMM)

In this paper GMM, with 8 Mixtures Gaussian densities, is
used to estimate the speaker models using the feature vectors
described in section 4.3, and trained using the Expectation
Maximization (EM) algorithm. In the GMM model, the
features distributions of the speech signal are modeled for
each speaker as follows.

(5)

where

(6)

where X is a random vector of D-dimension, p(X/λλλλλ) is the
speaker model; p

i
 is the ith mixture weights; b

i
(X) is the ith pdf

component that is formed by the ith mean µµµµµι and ith covariance
matrix, where i = 1,2,3,…,M, and each density component is a
D-variants Gaussian distribution given eq. (7).

(7)

The mean vector, µµµµµi
, covariance matrix, ΣΣΣΣΣi

, and mixture
weights p

i
 of all density components, determines the com-

plete Gaussian Mixture Density which represents to each
speaker. To obtain an optimum model representing each
speaker we need to obtain a good estimation of the GMM
parameters. To this end, the Maximum-Likelihood
Estimation (ML) approach, which is a very efficient method,
can be used.  Here after the feature vectors to be used during
the training period are obtained, the ML method maximizes
the Likelihood of the GMM; where for a given of T vectors
used for training, X=(x

1
,x

2
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T
), the likelihood of GMM can

be written as [7], [9].

(8)

However it is a no-linear function of the parameters of the
speaker model, λ. Thus eq. (8) can not be maximized directly,
then the estimation of the ML parameters must be carried out
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using an iterative algorithm called Baum-Welch algorithm.
The Baum-Welch algorithm, which is the same algorithm
used by HMM to estimate its parameters has the same basic
principle of the Expectation-Maximization (EM) algorithm,
whose main idea is as follows: Beginning with an initial
model, λ, a new model λ is estimated such that

Next, we set the model parameters λ equal to those estimated
in the actual stage, λ, so that, the new model becomes the
initial model for the next iteration, and so on.  Then during
the estimation of the GMM parameters, to obtain an optimum
model for each speaker, the parameters µµµµµi

, ΣΣΣΣΣi 
and p

i
 should be

estimated iteratively until convergence is achieved.  The
initial condition p(i/X,λλλλλ) can obtained using the Viterbi
algorithm [5].  Subsequently, the parameters p

i
, the Mean

vector µµµµµ and Variance ΣΣΣΣΣI
, which is assumed to be a diagonal

matrix, required in the subsequent iterations are given by

(9)

(10)

(11)

where the likelihood a posteriori of the i-th class is given by

(12)

This process is repeated until convergence is achieved.  Here
the Mixes order and the model parameters previous to the
Maximization of the likelihood of GMM, can be different
depending on the application.

4.1.5 Decision Stage

In this stage, after the GMM models for each speaker are
estimated, the target is to find the model with the maximum
likelihood a posteriori for an observation sequence.
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where P(X/λλλλλκ) denotes the Gaussian Mixture density given
by eq. (5).

4.2 Enhancing the Features Vector

The performance of speaker recognition system can be
seriously degraded when the SRS uses a channel
communication, such as the telephone lines, because the
transfer characteristics of the communication channel, the
environment or the microphone characteristics.  The LPC-
cepstral coefficients have shown to be robust when operates
with low speech signal quality, providing a good performan-
ce when the same data set are used for training and evaluation,
i.e. closed test.  However their performance is considerately
degraded when the SRS is tested with different data set, i.e.
open test.  This is because the data used for closed and open
test of each speaker may have different acoustic conditions.
Thus, the channel normalization techniques have been
proposed to reduce the features distortion and keep up the
recognition performance.  For channel normalization, the
Cepstral Mean Normalization (CMN) and RASTA filtering
have been proposed which can archive a considerable amount
of environmental robustness at almost negligible cost [4]. A
comparison of these channel normalization techniques,
presented in [1], show that the CMN is better than the RASTA
filtering because the RASTA filtering introduces phase
distortion in the time domain, while the recognition results
for corrected RASTA technique are identical to those of
CMN.  Another suitable approach is the use of dynamic
features, because the higher dynamic features are invariant
to any constant bias within the temporal window used for
their derivation.  In addition they are invariant to slowly
time varying linear distortion of the speech signal introduced
by the communication channel as well as by the noise
environment.  Thus the speaker feature vector can be
enhanced by using the first and second order regression
coefficients, estimated as described in section 4.3.

4.3. Evaluation Results

The system evaluation was performed using two different
data set stored from several telephone calls, one for closed
test and the other one for open test.  To this end, the baseline
system using 16 LPC-cepstral coefficients extracted only from
the voiced parts is used.  The second evaluation is carried out
using the CMN technique to enhance quality of feature
vector, which has been affected by the communication
channel and the environment noise.  The third evaluation
use a feature vector obtained by concatenating the dynamic
features (delta and double-delta cepstral) and the LPC-cepstral
features vector.  Several conclusions are explained after each
evaluation.

Científica
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The Database used for training and evaluation was provided
by the KDD (Telecommunications company of Japan that
provides long distance telephone services) that consists of
80 different speakers, with a pronunciations of 10~25 phrases
of 2.5-3s in Japanese language for each speaker by telephone,
those phrases are repeated for each speaker 6 times with a
total number of phrases equal to 10805.  For training of the
GMM and open test evaluation, 4 repetitions of the same
phrases were used, giving in total 7147 phrases. For system
evaluation in close test, the same data for training was used
and for system evaluation in open test, 2 different repetitions
were used which were stored in different times, giving a total
of 3658 phrases.

Each repetition was stored by telephone in intervals of 1
month with sampling a frequency of 8 KHz.  For the baseline
system, in this study, we will use as feature vector 16 LPC-
cepstral coefficients extracted from the voiced part of the
KDD database because it is very well known that using feature
vectors extracted only from the voiced part; the SRS perfor-
mance improves.  In addition there are some other advantages
against the use of whole speech signal; for instance it saves
storage requirements due to the reduction of the length of
feature vector; in some cases until a 50%.  Another advantage
is the saving time for training. For instance we used 20
iterations in the preliminary experimentation while using
only the voiced part it was not necessary more than 10
iterations to achieve even better results.

For the classification stage, a GMM with 8 Gaussian mixtures
using a diagonal covariance matrix is used. Experimental
results show that the SRS provides a recognition rate of
93.31% for close test and 76.97% for open test.  This system
performance is compared with other GMM based SRS using
several features vectors, such as the Cepstral Mean
Normalization (CMN) and the Dynamic features (Delta and
Double-delta cepstra).

Table 1. Result comparisons of system performance with
the combination of dynamic features.

Features
Vector

(Closed set)
6 581 phrases

(Open set)
3 282 phrases

LPC-C

93.31%

76.97%

LPC-CMN

80.72%

70.88%

Table 2. Experimental results of using LPC-Cepstral from voiced
part (LPC-C), LPC-Cepstral from voiced part applying delta

(LPC-D) and applying double delta (LPC-2D).

Features
Vector

(Closed set)
6 581 phrases

(Open set)
3 282 phrases

LPC-C

93.31%

76.97%

LPC-D

94.32%

78.06%

LPC-2D

94.01%

78.40%

155

Científica

4.3.1. Evaluation Results Using Ceptral Mean Normalization

The technique of CMN, use to compensate for channel
distortion, is equivalent to a high-pass filtering of the LPC-
cepstral coefficients, that is the CMN subtracts the mean the
value of the LPC-cepstral coefficients from the original LPC-
cepstral coefficients follows

(14)

where i is the coefficient number and N is the total frames
number in which the signal was divided to carried out the
feature vectors extraction. The CMN forces the average values
of the cepstral coefficients to be zero in both the training and
testing set, so it is not possible to apply it only in the testing
data set. Thus we need to apply the CMN in both training
and testing data to archive good compensation of the
unknown linear filtering effects [4].

Table 1 shows the performance of the Speaker Recognition
System using as feature vector a 16 elements LPC-Cepstral
coefficients vector extracted from the voiced part, compared
against the system performance applying the Cepstral Mean
Normalization (CMN). Using the Cepstral Mean Normalization
to enhance the feature vector, the system performance reduces
considerately in close and open test, as shown in the Table1.
We observed that the recognition performance for those
speakers with bad performance by using only the LPC-cepstral
improves when the CMN is used; while for those speakers with
in which the SRS achieves a good recognition performance
using the LPC-cepstral, the SRS recognition performance
considerably degraded after the CMN was used.  Some other
researchers have also presented similar decreasing performan-
ce when CMN is used [1].  This is because the CMN improves
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the performance in robust conditions, but decreases when clean
speech signal is used or when the communication channel is
time invariant.  This is because the CMN assumes that the
mean value of cepstral coefficients of clean speech has zero
mean; which is not entirely correct. In addition, the CMN
eliminates the convolution effects but it does not eliminates
the additive noise and does not take in account the
nonlinearities and non stationary condition of the
communications channel [1].

4.3.2. Combining LPC-Cepstrum and Dynamic Features

While begin more robust to the channel effects, the delta
features do not perform as well as the LPC-Cepstral in matches
condition. Thus the delta features are appended to the LPC-
cepstral to enhance the feature vector that will be used to
represent the speaker in both the training and testing stages
as shown in eq. (15)

(15)

Table2 show the SRS performance using a LPC-cepstral
feature vector enhanced by the Dynamic features (Delta and
Double-delta cepstra). Since the delta feature vector are less
affected by the channel variations and noise environment
they provide an enhanced feature vector for speaker
representation. In Table2 we can see the improvement of the
system performance using the dynamic features.

5. Conclusions

A SRS evaluation using dynamical features to improve the
performance of Speaker Recognition System affected by
different acoustic conditions is presented. These dynamic
features used during training and testing stages, allows a
reduction of the channel distortion and intra-speaker variations
when they store the same phrases in different interval times.  In
the SRS under analysis the features vectors are extracted only
from voiced parts of speech signals allowing a reduction of
approximately 50% in the training time.  Evaluation results
show that using the dynamical features extracted from the
voiced parts of speech signal, the SRS performance can be
improved also when it operates in open test conditions.
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