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1. Abstract

A direct adaptive neural control scheme with single and double
I-term is proposed to be applied for multivariable plant. The
control scheme contains two Recurrent Trainable Neural
Network (RTNN) models. The first RTNN is a plants parameter
identifier and state estimator. The second RTNN is a feed-
back/feed-forward controller with I-terms. The good
performance of the adaptive neural control with I-terms is
confirmed by closed-loop systems analysis, and by simulation
results, obtained with simple effect evaporator multivariable
plant, corrupted by noise and affected by small unknown input
time delay.

Key words: Recurrent Neural Networks, Back-propagation
Learning, Systems Identification, State Estimation, Adaptive
Control, Integral Terms, Simple Effect Evaporator, Discrete-
Time System, Time-Delay System.

2. Resumen (Identificación y control neuronal adaptable
de plantas multivariables con retardo)

Un esquema de control neuronal directo adaptable con uno
o dos términos integrales son propuestos para ser aplicados
con plantas multivariables. El esquema de control contiene
dos modelos de Redes Neuronales Recurrentes Entrenables
(RNRE). La primera RNRE es un identificador de los

parámetros y estimador de los estados de la planta. La
segunda RNRE es un controlador «feed-back/feed-forward»
con término integral. El buen desempeño del control neuronal
adaptable con termino integral es confirmado con un análisis
del comportamiento del sistema en laso cerrado y con
resultados de simulación, obtenidos usando un modelo
multivariable de un evaporador de simple efecto, perturbado
por ruidos y afectado por pequeños retardos en sus entradas.

Palabras clave: redes neuronales recurrentes, aprendizaje back-
propagation, identificación de sistemas, estimación de
estados, control adaptable, término integrales, evaporador de
efecto simple, sistemas con retraso por tiempo.

3. Introduction

Intelligent control using Neural Networks (NN) has been
applied to various control problems [1]. It is known to be
effective in many situations, especially when the controlled
plant exhibits nonlinearity, and the plant parameters are
unknown and time-varying, especially for mechanical systems.
On the other hand, the unavoidable effects of identification
and control errors due to model uncertainties, together with a
slow load variation caused a steady-state offset that needs to
be removed. In this case an integral action added to the con-
trol compensates the plant uncertainties and load effects, and
help the system to track the reference signal. Within the context
of the servomechanism problem, integral action is a funda-
mental technique in the control repertoire and the I-PD (or
PID) controllers have been the most used controllers in the
industry, because of their simple structure and robust perfor-
mance in wide range of operating conditions [2]. Here the PD
mode is used to speed up response, whereas the PI mode is
applied to eliminate the steady state offset. The PID controller
parameters are tuned taking into account the plant parameters
like gain, time constant, and time delay, where they could fined
a good values when the relationship between the time constant
and the time delay is less than one. In last years, the classical
PID scheme has been completed by auto-tuning devices like
Neural Networks [3], and Fuzzy Systems [4], to adjust on-line
its parameters. To resolve some specific control problems in
mechanical systems, some extensions to the classical PID
scheme have been added. So, for regulator tasks on mechanical
systems that exhibit friction the PID-controller is combined
with mass and friction feed-forward [4]. The state PD-controller

143



IPN                                                                                                                                                                                                   ESIME

plus gravity compensation terms is widely used in robot
manipulators control. However, this linear state feedback
controllers could not compensate inertial and Corriolis forces
and cannot render asymptotic stability for path tracking tasks.
To overcome this [5], a nonlinear PID controller is proposed.
The major disadvantage of these controllers is that they could
be applied only for Single-Input-Single-Output and not for
Multi-Input Multi-Output (MIMO) systems. Also in the case
of high order systems, the PD action is not sufficient to assure
systems stability. In all applications the PID control needs
adjustment which could be done automatically using self tuning
facilities. The use of RNN for systems identification and con-
trol could overcome all these problems. In [6], [7], Baruch et
al. proposed a new RNN and a Back-propagation (BP) like
algorithm of its learning, applied for identification and control
of petrochemical and biotechnological plants. The applied
direct adaptive neural control system [6] contains one RNN
for identification and state estimation and two adaptive neural
controllers (feed-back and feed-forward) which offer a good
performance and flexibility. In [8] the stability of the proposed
RNN and its learning is proved and this RNN has been applied
for model reference adaptive control of a DC motor. In [9] the
direct adaptive neural control scheme has been extended with
one or two I-terms and applied for control of multivariable
plant. In [10] a rather complicated prediction-based control of
unstable plant with small delay time and perturbation terms
has been designed. The aim of the proposed paper is to apply
a RNN control scheme with one or two I-terms for direct
adaptive neural control of an industrial multivariable plant
model, taken from [11], like the simple effect evaporator is, and
to study its behavior in some unknown unmodeled dynamics
conditions represented by an offset and a small time-delay in
the plants input.

4. Development

4.1 Recurrent Neural Model Description

In [6], [7], [8] a discrete-time model of RTNN, and the dynamic
Back-propagation weight updating rule, are given. The RTNN
model is described by the following equations:

X(k+1)=JX(k)+BU(k), S(k)= θ [X(k)];                        (1)
Y(k)=θ [C S(k)]                                                            (2)
J=block-diag (J

i
), |J

i
| < 1                                               (3)

Where: X(k) is a N-state vector; U(k) is a M-input vector; Y(k)
is a L- output vector; S(k) is a N output vector of the hidden
layer; θ(.) is a vector-valued activation function (saturation,
sigmoid or hyperbolic tangent) with appropriate dimension; J
is a weight state-block-diagonal matrix, where the stability
condition (3) is imposed on its blocks; B and C are weight

input and output matrices with appropriate dimensions and
block structure, corresponding to the block structure of J. As
it can be seen, the given RTNN model is a completely parallel
parametric one, so it is useful for identification and control
purposes. Parameters of that model are the weight matrices J,
B, C and the state vector X(k). The general BP learning algorithm
is given in the form:

W
ij
(k+1)=W

ij
(k) + η ∆W

ij
(k) + α∆W

ij
(k−1)        (4)

Where: W
ij
 (C, J, B) is the ij-th weight element of each weight

matrix (given in parenthesis) of the RTNN model to be updated;
∆W

ij
 is the weight correction of W

ij
; η, α are learning rate

parameters. The updates ∆C
ij 
, ∆J

ij
, ∆B

ij
 of the model weights

C
ij 
, J

ij
, B

ij
 are given by:

                ∆C
ij
(k) = [T

j
(k)−Y

j
(k)] θ’[Y

j
(k)] S

i
(k)                          (5)

              ∆B
ij
(k) = R U

i
(k)                                                             (6)

              ∆J
ij
(k) = R X

i
(k-1)                                                         (7)

                R = C
i
(k) [T(k)-Y(k)] θ’[S

j
(k)]                                     (8)

Where: T(k) is a target vector with dimension L and [T(k)−Y(k)]
is an output error vector also with the same dimension; R is an
auxiliary variable; θ’(.) is the derivative of the activation function,
which for the hyperbolic tangent one is given by: θ’(x)=1−x2.

In [9] the following Theorem of stability is proved:

Theorem of stability: Let the RTNN with Jordan Canonical
Structure is given by equations (1)-(3) and the stable
Bounded-Input-Bounded-Output (BIBO) nonlinear plant
model is supposed to be:

                                     X(k+1) = f [X(k), U(k)]                          (9)
                                    Y(k) = h [X(k)]                                       (10)

Where: X(k), U(k), and Y(k) are plant state, input, and output
vector variables with dimensions Np, M, L, respectively (here
L=M is accepted); h(.), f(.) are smooth bounded nonlinear
functions. Under the assumptions made, the application of
the BP learning algorithm for J(k), B(k), C(k) given in general
matrix form described by (4) and the learning rates η(k), α(k)
normalized with respect to the error, and derived using the
following Lyapunov function:

L(k) = ||J(k)||2 + ||B(k)||2 + ||C(k)||2                                               (11)

Then the identification error is bounded, and:

∆L(k) < −η(k) |E(k)|2 - α(k) |E(k-1)|2 − d;                        (12)
E(k) = Y

p
(k) – Y(k)
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Where: ∆L(k) = L(k) − L(k−1); the learning parameters η(k),
α(k) are normalized and depends on the error with the fol-
lowing bounds: 0 < ||η(k)|| < 1, 0 < || α(k)|| < 1; d is bounded error
perturbation term.

As it could be seen from equations (1), (2), the proposed
canonical RTNN architecture is a two-layer hybrid one with
one feed-forward output layer and one recurrent hidden layer.
The main advantage of the proposed two-layer Jordan
Canonical Form (JCF) RTNN architecture is that it has a
minimum number of weights to learn. The application of this
RNN model for systems identification of MIMO nonlinear
plant does not require additional structural information about
the relative systems order. The RTNN architecture is described
in state-space vector-matrix form and could serve as a nonlinear
dynamic identifier and one-step ahead state predictor/
estimator.

4.2. Direct I-term Adaptive Neural Control of Time-Delayed
Plant

Two control schemes are considered in this paper - with one
and with two integrals in the control part. The block diagram
of the first control scheme, containing one integral block is
shown on Fig.1. This control scheme contains RNN-1 identifier,
one feed-back / feed-forward RNN-2 controller, one I-term, an
unknown time delay τ and a con-stant offset O(k) in the input
of the plant.

Let us suppose that the studied stable continuous-time
nonlinear plant is linearized around an operation point and
normalized. Let us also add some unmodeled dynamics
represented by a small unknown time delay and a constant
offset O (.) to its input. So the continuous state space plant
model is given by:

X(t) = AX(t) + BU(t) + BO(t − τ)                              (13)
Y(t) = CX(t)                                                                (14)

Let us to discretize the plants equations (13), (14), as it is:

       X
p
(k+1) = A

p 
X

p
(k) + B

p
 U(k−t

o
) + B

p
 O(k−t

o
)

       Y
p
(k) = C

p 
X

p
(k)

Where: A
p
 ∈ ℜ(Np x Np)

 
is a state matrix; B

p 
∈ ℜ(Np x M) is an input

matrix; C
p 
∈ ℜ(Np x L)  is an output matrix, t

o
 is a discrete time

delay variable, and L=M is supposed. This stable linearized
plant is identified by a RTNN with topology, given by equations
(1) to (3) which is learned by the stable BP learning algorithm,
given by equations (4) to (8), where the identification error
E

i
(k) = Y

p
(k) – Yi(k) tends to zero (E

i
 →0, k → ∞). This

identification error could be considered acceptable if it reached
a value less than 2%. Following the same way as in [8] we
should linearize the RNN-1 model activation functions (see
equations. (1) to (3)). When the learning error of identification
reached small value, the following linear state-space RNN-1
model, could be obtained:

X i(k+1)=J iX i(k)+B i U(k)                                         (17)
Y i(k)=C iX i(k)                                                              (18)

Where: Xi(k) is a N
i
-dimensional state vector; Yi(k) is a L-di-

mensional output vector; Ji ∈ ℜ (Ni x Ni)
 
, Bi∈ ℜ (Ni x M)

 
 and Ci

 
∈

ℜ (Ni x L)  are constant matrices. Here we suppose N
i
 ≥ N

p
 and L

= M (equal input-output dimensions). It is proved that the
identification RTNN learning BP algorithm is convergent, [9],
and it is proved that the RTNN model is stable, controllable and
observable, [9], [12], [13], so the identification error Ei(k) =
Y

p
(k) – Yi(k) tends to zero, and the identification RTNN output

tends to the plant output (Yi(k) → Y
p
(k)). Following the block

scheme of the system, given on Fig.1, we could define the
controller RNN-2 to have the same topology and learning as
the identification RNN-1, and its neural model also could be
linearized as:

          Xc(k+1) = Jc Xc(k)–Bc
1
 V(k)–Bc

2
 Xi(k)+Bc

3
 R(k)           (19)

    U(k) = Cc Xc(k)                                                                 (20)

Where: Xc (k) is a N
c
 dimensional state vector (N

c
 ≤ L+M+N

i
 is

supposed); Jc ∈ ℜ(Nc x Nc)
 
; Bc

1 
∈ ℜ(Nc x L)

 
; Bc

2 
∈ ℜ(Nc x Ni)

 
; Bc

3 
∈

ℜ(Nc x L); C
p 

∈ ℜ(M x Np)  are constant matrices (L=M is

supposed); the I-term V(k) ∈ ℜ(L x 1)
 
 output is defined as:

V(k+1) = V(k) + T
o
 Y

p
(k)                                             (21)
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Fig. 1. Block-diagram of the direct adaptive neural control
system containing one I-term
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To derive the dynamics of the closed-loop system we need to
define the following statements and z-transfer functions,
derived from its corresponding state space representations:

        W p(z) = W
1
 p(z) D(z); D(z) = diag (z − ti), i=1,...,M             (22)

       W
1
 p(z) = C p (zI−A p)−1 B p                                                  (23)

        P i(z) = (zI – J i)−1 B i ; X i(z) = P i(z) U(z)                         (24)
        I(z) = (zI−I)-1 T

o
 ; V(z) = I(z) Y p (z)                                    (25)

      Q
1
(z) = C c (zI − J c)-1 B c

1                                                                                
(26)

      Q
2
(z) = C c (zI − J c)-1 B c

2                                                                              
(27)

       Q
3
(z) = C c (zI − J c)-1 B c

3                              
                                 (28)

The RTNN learning BP algorithm, given by the equations (4) to
(8) is proved to be convergent (see the Theorem of stability,
given above), and the RTNN model is proved to be stable,
controllable and observable (see [9], [12], [13]), so the identification
and control errors Ei(k) = Y

p
(k) – Yi(k), and Ec(k) = R(k) − Y

p
(k)

tends to zero. The plant is also supposed to be BIBO stable. So
the transfer functions (22) to (28) are stable with minimum phase.
Expressing (15), (16) and (19), (20) in z-operator form, taking into
account (22), (23), and using (24) to (28) yields:

      Y 
p
(z) = W

1
 p(z) D(z)U(z) + W

1
 p(z) D(z)O(z)       (29)

       U(z) = −Q
1
(z) I(z)Y

p
(z)−Q

2
(z)P

i
(z)U(z)+Q

3
(z)R(z)       (30)

       U(z)=[I+Q
2
(z)P

i
(z)]–1[−Q

1
(z)I(z)Y

p
(z)+Q

3
(z)R(z)]       (31)

Substituting (31) in (29) after some manipulations yields:

    {(z−1)I + W
1
 p(z) D(z) [I+Q

2
(z)P

i
(z)]–1 Q

1
(z) T

o
} Y 

p
(z) =

                  W
1
 p(z) D(z) [I + Q

2
(z) P

i
(z)]–1 Q

3
(z) (z−1) R(z) +

                     + W
1
 p(z) D(z) (z−1)O(z)                                                            (32)

The equation (32) shows that the closed loop system remains
stable if the time delays of the plant are not greater than the
corresponding time constants of the continuous plant model,
which is also condition for a normal PID regulator with a SISO
plant. The proposed control method does not require
information about the relative order of the plant like [14] does.
It is seen also that the I-term reduces the steady-state systems
error, which tend to zero when k tends to infinity. The block
diagram of the second control scheme, containing two inte-
gral blocks is shown on Fig.2. The difference with respect to
that, given on Fig.1 is that it contains one more I-term. In this
case the equation (19) changed and obtaind the form:

    Xc(k+1)=JcXc(k)−Bc
4
 Z(k)−Bc

1
V(k)–Bc

2
Xi(k)+Bc

3
R(k)      (33)

Where: Bc
4 
∈ ℜ(Nc x L) is a constant matrix, and the second I-

term output vector is Z(k) ∈ ℜ(L x 1). The corresponding
additional stable (or neutral) minimum phase transfer functions
are defined as:

Z(k+1) = Z(k) + T
o
 V(k)          (34)

I
1
(z) = (zI−I)-2 T 2

o
 ; Z(z) = I

1
(z) Y p (z)          (35)

Q
4
(z) = C c (zI − J c)-1 B c

4
         (36)

Performing some substitutions in a similar way as above, we
could obtain the following closed-loop systems equation for
the case of double I-term:

{(z−1)2I + W
1
 p(z) D(z)[I+Q

3
(z)P

i
(z)]–1[Q

1
(z)T2

o
+

 + Q
2
(z)(z−1)T

o
]} Y

p
(z)={W

1
 p(z) D(z)[I+Q

3
(z)P

i
(z)]–1

 Q
4
(z)(z−1)2R(z)+ W

1
 p(z) D(z)(z−1)2O(z)                              (37)

The equation (37) shows that the closed loop system remains
also stable for small delays, and it is obvious that both I-terms
reduces the steady-state systems error, which tend to zero
when k → ∞. In the next part, the quality of the derived above
two adaptive neural control schemes with I-terms will be
illustrated by a simple effect evaporator control.

4.3. Simulation Results

Sketch of the simple effect evaporator is shown on Fig.3.

List of symbols used.

M
1
,C

1
Input volumetric flow and solution concentration;

M
2
,C

2
Output volumetric flow and solution concentration;

M
s

Input steam mass flow;
P

1
,P

2
Superior and inferior chamber pressures;

M
v

Steam mass flow produced by the evaporator;
M

e
Output steam mass flow;

h Equivalent level of the solution  in tubes;
F

a
Condenser input water flow;

Fig. 2. Block-diagram of the direct adaptive neural control
system containing two I-terms.
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γ
1
,γ

2
Input and output solution densities;

G
l

Evaporator‘s solution mass;
G

x
Equipment solids mass;

G
s

Steam mass in the lower chamber;
G

v
Steam mass in the upper chamber;

V
0

Space volume under the tubes;
S

t
Transfer section of tubes;

S
0

Valve position;
d

1
, d

2
Constants;

e
1
, e

2
Constants;

µ, P
l

Constant; constant pressure of liquid discharge;
L, K Evaporation heat, constant of heat transfer;
θ

s
, θ

l
Steam temp.; boiling temp. of the liquid;

V
c
, γ

s
Vol. of the heating chamber; steam density;

M
c
,L

1
Condense steam flow; evaporation heat;

V
v
, γ

v
Vol. of the upper chamber; steam density;

β Constant;
K

1
,K

2
Constants;

F
a

Water flow.

The model is based on the derivation of the mass balance
equations of the evaporator (see [11]), which are

(38)

(39)

(40)

Fig. 3. Sketch of the simple effect evaporator.

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

The system of differential and algebraic equations (38) – (56)
completely characterizes the dynamics of the simple effect
evaporator. These equations are linearized and normalized so
to obtain the state space dynamics equation (13), (14), with
the following state, input and output vectors: xT = (h, P

1
, P

2
,

C
2
); uT = (M

S
, S

0
, F

a
); y = (h, P

1
, P

2
); and the following time

constants in the respective states: T
h
=0.250 min; T

p1
=0.078

sec.; T
p2

=0.300; T
c2

=6 min. Then the plant equations are
discretized with a time period T

o
=0.0125 min, so to obtain the

state space representation given by (15), (16) with the following
state, input and output nonzero matrix elements:

a
11

= 0.9813, a
12

= −0.0141, a
13

= −0.0095, a
14

= −0.0003,
a

22
= 0.1646, a

23
= 0.1123, a

24
= −0.0007, a

32
= −0.0100,

a
33

= 0.0722, a
34

= 0.0176, a
43

= 0.0010, a
45

= 0.9980;

dG
l

dt
= γ1Μ1 − γ2Μ2 − Μ

v

dG
x

dt
= γ1M1C1 − γ2M2C2

dG
v

dt
= M

v
 − M

e

dG
v

dt
= M

v
 − M

e

G
l 
= (V

0
 + s

l
h)γ2

G
x 
= G

l
C2

γ2 
= d

2
c

2 
+ e

2

γ1 
= d

1
c

1 
+ e

2

P
1
 − P

l

γ
2

M2 = µs
o       

2                − 2gh

M
V 
= 1/L [K.s (θ

s
− θ

l
)]

θ=
 
θ

l 
 (P

1
,C

2
)

G
S 
= V

C.
.γ

S

γ
S 
= d

3
P

2
 + e

3

θ
S
=

 
 d

4
P

2
 + e

4

M
C 
= 1/L

1
 [K.s (θ

s
− θ

l
)]

G
V 

= V
V.

.γ
V

γ
V 

= d
5
P

1
 + e

5

M
e 
= β

       
(P

1
− P

C
) γ

S

P
C 

= K
1
F

a
 + K

2
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a)

b
11

= −0.0022, b
12

= −0.0100, b
13

= 0.0215, b
21

= 0.0514,
b

23
= −1.0973, a

31
= 0.1385, b

33
= 0.0277, b

41
= −0.0003;

c
11

= 1.0, c
22

= 1.0, c
33

= 1.0.

The results of the first simulation experiment of RNN plant
identification are shown on Fig. 4 a-d. The RNN topology is
(3, 10, 3- three inputs, ten neurons in the hidden layer and
three outputs). The learning parameters are η=0.7, α=0.05. The
first and the third inputs are delayed with τ

1
= 1 min, and τ

3
=

0.75 min. The three input plant signals have the form:

         M
S 
= 0.1 sin(0.05.kπ) – 0.07 sin (0.125. kπ)                   (57)

         S
0 
= 0.15 sin(0.075.kπ) + 0.1 sin (0.25. kπ)                    (58)

        F
a 
= 0.05 sin(0.1.kπ) + 0.05 sin (0.3. kπ)                         (59)

Fig. 4. Graphical results of plant identification. Comparison
of the plant output and the RNN output; a) for the h-output;

b) for the P1 output; c) for the P2 output; d) MSE% of
identification.

a)

b)

c)

d)

a)

Fig. 5. Graphical simulation results obtained with a control
scheme containing one I-term. Comparison of the plant

output and the reference signal; a) for the h-output; b) for
the P1 output; c) for the P2 output
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The graphics on Fig. 4a-c compare the outputs of the plant
with the respective outputs of the RNN in a 5 min simulation,
and the Fig. 4d gives the Means Squared Error (MSE%) of
identification, which reached  the final value of 1.7%. The
results exhibit a fast convergence and a good representation of
the time delays. The simulation results with the controlled
plant are obtained using a white noise (WN-function) reference
signal with parameters T

m
, p, s, i.e. sequence of pulses with

different amplitude in the interval [−0.5, 0.5] and frequency
2.5. The simulation results obtained with the first control
scheme (see Fig.1) are given on Fig.5 a-c. The RNN-1 topology
is (3,6,3)- and the RNN-2 topology is (12,10,3). The learning
parameters for both RNNs are η=0.6, α=0.05. It is added a 20%
constant offset to all plant inputs, and the first and the third
inputs are delayed with τ=0.75 sec. The graphics compare the
output of the plant and the respective reference signal. The
results exhibit a good convergence (MSE% below 2.5%).

The simulation results given on Fig. 6 a-c corresponds to the
control scheme given on Fig.2. The RNN-1 topology is also
(3,6,3) and for the RNN-2 it is (15,10,3). The learning parameters
for both RNNs are η=0.5, α=0.01. A 40% constant offset is
added to all plant inputs. The first and the third inputs are
delayed with τ

1
=2.0 sec., and τ

3
=0.75 sec., respectively. The

results exhibit a good convergence (MSE% below 2.5%) and
a good resistance to small delays.
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5. Conclusions

A direct adaptive neural control scheme with single and double
I-term is proposed to be applied for time-delayed multivariable
plant. The control scheme contains two Recurrent Trainable
Neural Network (RTNN) models. The first RTNN is a plants
parameter identifier and state estima-tor. The second RTNN is
an integral plus states controller. The good performance of
the adaptive neural control with I-terms is confirmed by closed-
loop systems analysis, and by simulation results obtained
with simple effect evaporator multivariable plant corrupted by
noise, and affected by an unknown input time delay. The results
show a good conver-gence (1.7% MSE of identification and
2.5% MSE of control) and ability of the I-term adaptive neural
control to compensate a great constant offset (up to 40%).
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