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1. Abstract

This paper examines three methods of gas turbine parametric
diagnosing. The functioning methods are simulated in the
identical conditions of gradually developing faults and random
measurement errors. The objectives are to tune the methods, to
compare them, and to choose the best one on basis of
probabilistic criteria of class correct and incorrect recognition.
So, main focus of the paper is a recognition trustworthiness
problem. A previous research work in this direction is united
with new results and they all together are presented in more
systematic form as a common approach. Besides the method
comparison and selection, other ways to enhance the
trustworthiness are described and the perspectives to realize
the methods in real condition monitoring systems are analyzed.

2. Resumen

Este artículo examina tres métodos del diagnóstico paramétrico
de turbinas de gas. El funcionamiento de los métodos se simu-

la en condiciones idénticas al desarrollo de fallas y errores
aleatorios de medición. Los objetivos son afinar los métodos,
compararlos y escoger el mejor con base en criterios
probabilísticos del reconocimiento correcto e incorrecto de
las clases de fallas. Así, el enfoque principal del artículo es el
problema de autenticidad del reconocimiento. Algunos resul-
tados de investigación previa en este campo se unen con nue-
vos resultados y todos se presentan en forma más sistemática
como un enfoque común. Además de la selección del método
mejor, se describen otros medios para mejorar la autenticidad
y se analizan perspectivas de la realización de los métodos en
los sistemas actuales de monitoreo.

Key words: Gas turbine fault classification, thermodynamic
model, diagnosis methods, fault recognition trustworthiness

3. Introduction

Knowledge of machines’ health through condition monitoring
can allow reducing maintenance cost without risk of failure
and give industries significant improvements in efficiency.
With a new generation of high temperature and high output
gas turbine engines the objectives of attaining a high
availability and limiting degradation is of vital importance
[1]. That is why advanced condition monitoring systems for
critical turbomachines and auxiliary equipment are designed
and maintained in recent decades.

To examine the wide range of common deterioration
problems, a comprehensive monitoring system must integrate
a variety of approaches. In addition to vibration analysis,
there are other technologies to be employed such as gaspath
analysis also known as aerothermal [1] or thermodynamic
performance analysis. Gaspath analysis of turbomachinery
presents advanced calculation techniques used to compute
and correlate all performance variables of the gaspath. This
technology applied in gas turbine monitoring in order to
simulate and detect the failures also provides insight into
how efficiently fuel is being utilized and so favours a fuel
saving.

Gaspath analysis is a multidiscipline incorporating three
interrelated disciplines [2,3]: common engine state
monitoring, state prognostics, and concerned in this paper
detailed diagnostics (fault localization or identification).
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The faults exert influence on measured and registered gaspath
variables (pressure, temperatures and consumptions of the
gas flow, rotation speeds, fuel consumption, and any others).
On the other hand, the influence of operational regime
changes is much greater. That is why in the localization
algorithms, raw measurement data should be subjected to a
complex mathematical treatment to obtain final result
identified faults of gas turbine modules (compressors,
combustors, turbines). Besides the gaspath faults, control
system and measurement system malfunctions can be also
detected analyzing the gaspath variables [4].

However, a lot of negative factors, which are explained in
more detail below, affect the diagnosing process and make
difficulties for the correct detection. So, engine fault detection
presents a challenging recognition problem.

To review common works on condition monitoring [1] and
fault detection [5] as well as works applied to gas turbines
[4,6], it can be stated that a simulation of analyzed systems is
an integral part of their diagnostic process. The models fulfill
here two general functions. The first one is to give a gas turbine
performance baseline in order to calculate differences between
it and current measurements. These differences (or residuals)
do not practically depend on operational regime variations
and so serve as good degradation indices. The second function
is related with a fault classification. The models connect mo-
dule degradation and the residual changes assisting with a
fault class’s description.

In the eighties and early nineties, any direct use of complex
statistical recognition methods in an on-line capacity was
prohibitively expensive in time and computer capacity. It
was therefore often decided to simplify diagnostic techniques
in order to reduce processing requirements. For instance,
MacIsaac and Muir [6] used the method based on fault matri-
ces where every class (fault signature) is presented by
residual’s signs only. Other example of a simplified technique
can be found in [7]. To recognise the classes the author applies
linear and non-linear discriminant analysis but he needs to
minimize an axis set of the class’s recognition space to redu-
ce processing requirements. However, our statistical
simulations of diagnosing process have shown [8] that the
mentioned simplifications cause great recognition errors.

Over the last decade there have been significant advances in
instrumentation and computer technology which resulted
in more perfect approaches such as [4]. The authors propose
some enhanced diagnosing methods based on non-linear
gaspath models, statistical neural networks, and probabilistic
fault identification that promise high confidence. However,
this work as many other lacks for a numerical estimation of

method’s effectiveness and any comparison with other known
approaches.

As opposed to the mentioned works, this paper is concentrated
on a trustworthiness problem. On basis of proposed earlier
probabilistic indices [9], three methods are optimized and
compared in order to choose the best one and give
recommendations for practical use. The method analysis is
preceded in the paper by a description of developed and
applied models.

4. Development

4.1 Models used

First of all the diagnosing process needs a base-line to
calculate the residuals [5] which may be presented as relative
changes of gaspath variables
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is given which is able to describe correctly an engine
behaviour [10]. To compute the coefficients c

1
 –c

15 
 this model

needs registered data inside a wide range of operational
conditions.

Non-linear thermodynamic model [3], in which every mod-
ule is presented by its full manufacture performance map as it
is done in [6], demonstrates the option of a physical model.
The capacity to reflect the normal behaviour is based on
objective physical principles realized. Since the faults affect
the module performances involving in the calculations the
thermodynamic model has additional capacity to simulate
gas turbine degradation.
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To have a possibility to displace the module maps of
performances v (corrected flow parameters or efficiency
parameters) for a fault development introducing into the
model, the correction factors

 
0j

j
j ν

ν=Θ                                                   (3)

are introduced as a relative performances, where v
j0
 is a nomi-

nal value. Fig.1 gives a schematic representation of correction
factor actions.

So, in the thermodynamic model, the gaspath variables rela-
te with the control variables and the correction factors i.e.
present a vector function of the view

 ),(
→→→
ΘUY                                       (4)

This function is computed as a solution of an algebraic
equations system reflecting the conditions of a gas turbine
modules combined work. The software consists of
approximately 60 subprograms, most of them are universal.
Thermodynamic models of more than 20 gas turbine engines
of various schemes were elaborated and applied in health
monitoring systems [3].

It is known that typical gaspath faults cause relatively small

residuals (4-6%). That is why a linearization of the functional

dependence Y(Θ) is possible and the linear model:

        →→
Θ= δδ HY                                          (5)

is widely used in diagnostics. It connects the small relative
changes δΘ of correction factors with the relative deviations
δY of gaspath variables by the matrix of influence coefficients
H. The thermodynamic model software is capable to generate
the matrices H for any operational conditions determined by
the vector U.

What is a difference between the simulated deviations δY and
the residuals δY* based on real measurements? Ideally, they
should be equal however every vector has its own errors.

As described before, either the non-linear model (4) or the
linear one (5) are capable to simulate the fault development
and for this reason can be classified as diagnostic models.
However, fault modeling accuracy presents a separate problem
and this is not an object of current study. In this paper, the
hypothesis is accepted that the diagnostic models adequately
describe the mechanisms of gaspath deterioration;
consequently, the vector δY does not contain errors. In section
4.6, some arguments are given to support the hypothesis.

As regards the vector δY*, its errors occur due to measurement
errors in Y and U as well as possible inherent inaccuracy of the
function Y

0
(U). It is supposed that a systematic component of

these errors does not depend on a deterioration development
and a random component is normally distributed due to various
factors affecting the accuracy of the residuals. As a consequence,
the residuals δY* can be presented as a sum of the deviations δY
and the standard normal distribution vector ε

n
 multiplied by

the diagonal matrix Σ
Y
 of maximal dispersions. In this way,

 →→→

Σ+= nYYY εδδ *                                      (6)

Inside the following approach to gas turbine diagnostics and
methods’ comparison in basis of trustworthiness criteria, the
described models aid to form a gas path fault classification.

4.2 Recognition trustworthiness: common approach

The pattern recognition theory supposes three principle
stages of total recognition process: a classification forming,
a recognizing itself, and a trustworthiness estimating. These
stages are concretized below in application to a gas turbine
diagnostics.

Fig. 1. Correction factor effects.
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4.2.1 Classification

Many gaspath faults are known from scientific literature. For
instance, Meher-Homji et al. [11] give an excellent discussion
of performance degradation mechanisms. Existent fault variety
is too great to distinguish all possible gas turbine degradation
states, moreover a maintenance personnel does not need such
a detailed diagnosing. That is why the degradation states should
be divided into limited number of classes.

There are many difficulties to form a representative
classification based on real fault appearances only. The faults
appear rarely and their displays depend on a fault severity,
engine type and operational conditions. A few degradation
modes only, for instance, a compressor contamination of
stationary gas turbines and compressor erosion of helicopter
engines, can be interpreted as a permanent problem.

As a result, the real classification could be theoretically made
up only for a great engine fleet maintained over a long period
of time and model-based classifications are widely used in
diagnostics [2,6].

In this paper, applying the models (4) and (5) the classification
is made up in the multidimensional space of the corrected
residuals
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and a diagnostic decision about the actual state is taken in the
same space. Here σY

i
 is a maximal random error amplitude of the

deviation [Y
i 
−

 
Y

0i
(U)]  and m is a number of measured variables.

So, the residual vector Z corresponds to the vector Y. The vector
Z corresponding to the measure Y* is formed in the same way.

Fig. 2.  Single and multiple fault classes.

The hypothesis is accepted that an object (engine) state D
can belong to one of q determined beforehand classes

     D
1
,D

2
,...,D

q
                                         (8)

only, as it is often supposed in the pattern recognition theory.
Consequently,
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We consider two types of classes: single and multiple.

The single type class has one independent parameter of fault
severity, for example, one correction factor or some correction
factors changed proportionally. This type is convenient to
describe any known permanent fault of variable severity. In
Fig. 2, the class D

1
 demonstrates this type. The point O

corresponds here to an engine normal state. The figure Ω
1

presented by the line O-L
1
 reflects theoretical changes of the

residuals Z while fault severity increasing to a limiting engine
state in the point L

1
. The figure Ω

1

∗ presents the residuals Z
incorporating their random components induced by
measurement errors. To complete class forming, any residuals
sample or distribution function inside the region Ω

1

∗ is
required.

In contrast to the single type class, the multiple type class
has more than one independent parameter, for example, some
correction factors to be changed independently. This class
may be useful to combine some faults when their own
displays and descriptions are uncertain. The class D

2
 in Fig. 2

is formed by independent changes of two correction factors,
that is why the region Ω

2
 presents a surface and the region Ω

2

∗

has more complex form.

4.2.2 Recognition

A nomenclature of possible diagnosis
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corresponds with the accepted classification D
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To make a diagnosis d a method dependent criterion
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d = d
l
 if R

l
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is established.

4.2.3 Trustworthiness

Various negative factors affect the diagnosing process and
the final recognition. So, to ensure the diagnosis d it needs to
be accompanied by any trustworthiness assessment.
Unfortunately, few probabilistic recognition methods only
are capable to compute a confidence parameter for a current
diagnostic action. On the other hand, such a particular
parameter depending on the current measure Y* can not serve
as a criterion of average method reliability, engine
controllability, and general diagnosing effectiveness.

For this reason mean trustworthiness characteristics are
determined for every analyzed method by a statistical testing
procedure. This procedure repeats numerously cycles of a
method action. In every cycle, the procedure generates random
numbers of the current class, fault severity, and measurement
errors according chosen distribution laws, then computes
actual pattern Z, and finally takes a diagnostic decision d
corresponding to this vector. A square diagnosis matrix Dd
(see Table 1) accumulates diagnosing results according the
rule

  ,1ljlj DdDd +=                         (d=d
1
)                (12)

All simulated patterns Z compose a testing sample Z*t. Its
volume Nt corresponds to a total cycle number. After a testing
cycle’s termination and diagnosis accumulation, the matrix
Dd is transformed into a diagnosis probability matrix Pd of
the same format by a normalization rule

 
∑
=

=
q

l
ljlj DdPd

1
 Dd

lj 
                                     (13)

The diagonal elements Pd
ll
 forming a probability vector Pt of

true diagnosis represent indices of distinguishing possibilities
of the classes. Mean number of these elements - scalar Pt -
characterizes the total controllability of the engine with its
measurement system. No diagonal elements give probabilities
of false diagnosis and their great values help to identify the
causes of bad class distinguishability. These elements make
up probabilities of false diagnosis

            PtPe jj −= and 1                                          (14)

also applied in comparative analysis.

The number Nc that determines computational precision of
the described indices is chosen as a result of compromise
between a time T to execute the procedure and diagnosing
accuracy requirements. In any case, uncertainty in the
probabilities should be less than studied effects of changes
of the method or diagnosing conditions.

4.2.4 Methods

Three recognition techniques which present different
approaches in a recognition theory have been chosen for
diagnosing. The first technique is based on the Bayesian
approach [12], the second operates with the Euclidian
distance to recognize gas turbine fault classes, and the third
applies the neural networks which present a fast growing
computing technique expanding through many common
fields of applications. The techniques have been adapted for
the diagnosing and statistically tested by the above
procedure. While the testing the settings of these diagnosing
methods were adjusted and the methods were compared in
equal conditions.

4.2.5 Comparison conditions

Fixed conditions in which the diagnosing methods are
simulated and compared are described below.

A. Gas turbine operational conditions determined by the
vector U are: a maximal gas turbine regime established by
the compressor rotation speed variable and standard ambient
conditions.

B. Measured parameters structure and accuracy correspond
to a gas turbine regular measurement system that includes 6
gaspath parameters to be included in the vector Y. It is
assumed that fluctuations of the residuals (7) mainly induced
by measurement errors are normally distributed.

C. Classification parameters. Two classification variants are
considered.

Table 1.  Diagnosis matrix.
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The first incorporates nine single classes and every one is
constituted by a variation δΘ

j
 of one correction factor

(inlet pressure losses factor increase and flow and
efficiency factors decrease for four principle engine mo-
dules: compressor, combustion chamber, compressor
turbine, power turbine).

The second includes four multiple classes corresponding to
the principle modules. Every multiple class is formed by
independent variations of two correction factors of the same
engine module and describes possible faults of the module.
This classification corresponds to maintenance needs – to
know engine condition to every module to be able to repair
faulty one.

All variations δΘ
j
 which present here fault severities are

uniformly distributed within the interval [0,5%]. The classes
also have a uniform distribution, so every class is equally
probable.

D. Testing sample volume. Analyzing precision of the
averaged probabilities, the sample volume was established
as a function of class number Nt=1 000 q.

In that way, section 4.2 embraces explanations of the approach
involved (formation of the fault classification, fault
recognition rule, and diagnosis trustworthiness indices) as
well as gives common conditions to compare the methods.
So, we have all necessary general information to begin
presentation of every method. In the following three sections,
the methods and their adjustment are described in more
details and some trustworthiness characteristics computed in
the described conditions are given.

Table 3. Trustworthiness indices (case of multiple class type)

4.3 Method 1: Bayesian recognition

For actual measurement Y* and corresponding Z the Bayes
formula permits to determine a posteriori probabilities:
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where
P(D

j
) is a priory probability of the class D

j
 and

f(Z*/D
j
) is its pattern density function

Density function assessment is a principle problem of

statistics. To simplify it the function f(Z*/Dj)  was presented

by elemental distributions f(Z/D
j
)  and f(Z*/Z)  .
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and the following assumptions were taken: 1) adequacy of

the linear model (5) applied to simulate faults, 2) uniform

distribution f(Z/D
j
)  of the model values Z with a different

fault severity, 3) normal distribution  f(Z*/Z) of residual errors.

Pointed assumptions considerably simplified the calculation
of the sought function: for single fault classes, an analytical
formula to take the integral (16) has been obtained as well as
a simple numerical algorithm for multiple ones.

According to the Bayesian rule the recognition decision d
l
 is

taken when  P(D
l 
/Z*)is maximal in the set P(D

j 
/Z*), j=1−q

Table 2. Trustworthiness indices (case of single class type).

.861

.0

.014

.0

.0

.063

.001

.004

.057

.001

.759

.002

.096

.030

.057

.014

.040

.001

.012

.001

.871

.0

.003

.089

.008

.012

.004

.0

.139

.002

.745

.033

.028

.023

.030

.0

Pd
.0
.025
.006
.016
.856
.056
.017
.024
.0

.008

.004

.036

.004

.017

.828

.017

.059

.027

.001

.020

.0087

.005

.014

.084

.834

.032

.003

.002

.009

.020

.004

.014

.139

.020

.788

.004

.059

.0

.010

.0

.0

.099

.001

.013

.818

Pt
 .861    .759     .871    .745    .856    .828     .834    .788    .818

Pt = 0.8178

P

P

Pt
        .891                .784                 .940               .883

Pt = 0.8744

P

Pd
.891
.045
.050
.014

.062

.784

.038

.116

.016

.016

.940

.028

.003

.072

.042

.883

/(

/(

*

1

*

q

l

DZf

DZf
→

=

→

Σ )()/

)()/

*
ll

jj

DPD

DPD
→

P

P
P P P

P
P P

P

P P

70

Científica

→→

j

ZZf )/( *

Θ
→→→

j

j dDZfZZf )/()/( *



IPN                                                                                                                                                                                                   ESIME

that corresponds with the general criterion (10) and rule (11)

if we put R
j
(D

j
/Z*) .

To assess average trustworthiness of this method (method 1),
the diagnosing algorithm based on Bayesian recognition has
been elaborated and inserted inside the testing procedure
described above. The resulting probabilities (see section
4.2.3) corresponding to a single type classification are placed
in Table 2 and the same data for a multiple type classification
are included in Table 3.

From Table 2 it can be seen that the classes D
2
 and D

4
 have

the lowest distinguishability according Pt and the elevated
magnitudes Pd

42
 and Pd

24
 explain the cause – a great mutual

intersection of these classes.

Comparison of Table 2 and Table 3 shows individual (for
every class by the vector Pt) and total (by Pt) trustworthiness
growth for the multiple classification that is a result of two
opposite tendencies. On one hand, the replacement of a sin-
gle type by a multiple one generally leads to more close class
intersection and lower trustworthiness. On the other hand,
the significant reduction of class total quantity (from nine to
four) has a contrary influence. In our case, the second tendency
dominates. Of course, another diagnosing method will change
the presented probabilities and, probably, the conclusions.

This is an advantage of the method 1 that every diagnosis
made for actual measurement may be accompanied by a
confidence probabilistic estimate and, on average, such
estimates will be maximal.

However, the method is not without its difficulties. It seems
to be too complicated to restore density functions of a gene-
ral form in a multi-dimensional recognition space utilizing
real measurements (patterns). Therefore, simple type classes
based on the linear model and ordinary theoretical
distributions may be described only.

That is why a class representation directly by pattern sets is
considered too as well as the methods 2 and 3 capable to treat
them.

4.4 Method 2: Euclidian distance

Such a simplification as density functions replacement on
the pattern sets permits simulating a fault severity growth by
the more exact nonlinear thermodynamic model and forming
complex multiple classes described by three and more
correction factors. Furthermore, this permits forming real data
based classes of general type without any model assistance

and consequently without negative influence of model proper
errors. Fig. 3 demonstrates new class representation; pattern
sets of four classes are given here in the three-dimensional
space Z.

The recognition space Z of residuals can be classified as
uniform since all residuals have the same dispersion according
to the transformation (7). That is why it will be correctly to
introduce a geometrical measure of closeness between the
current vector Z and the class D

j
 to be used as the recognition

criterion R
j
 (10). For concerned method, this measure is based

on the Euclidian distance between two points in a
multidimensional space.

The computational algorithm has been realized inside the
testing procedure and incorporates the following items.
Firstly, outside the testing procedure, a reference sample Zr
of the volume Nr incorporating the pattern sets Zr

j
 for all

classes is composed. Secondly, inside the testing procedure,
the criteria R

j
 are calculated for actual Z* of the testing sample

and every Zr
j
* of the reference set. Thirdly, the diagnosing

decision d
l
 is accepted by the general rule (11). The

trustworthiness indices (13) and (14) are calculated then
according to the general scheme (see section 4.2.3).

To select the best criterion type, the following variants were
considered:

- variant 1 - mean inverse distance M(1/d
i
) between a testing

sample point and reference points;

Fig. 3. Classes representation by the pattern sets
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- variant 2 - mean inverse quadratic distance M(1/d
i
2) between

the testing point and the reference points;
- variant 3 - mean distance M(d

i
) between the testing point

and the reference points;
- variant 4 - distance between the testing point and a reference
sample gravity center.

In preliminary statistical testing, the variant 2 ensured the best
class distinguishability and has been selected for further use.

Because the reference sample volume Nr influences the
computational accuracy and executing time in the same mode
as it does Nt, the value  Nr = Nt = 1000q  has been accepted to
carry out next calculations.

4.5 Method 3: neural networks

Neural networks consist of simple parallel elements called
neurons. According to the common scheme of supervised
learning networks are trained on the known pairs of input
and output (target) vectors. The connections (weights)
between the neurons change in such a manner that ensures
decreasing a mean difference (error) e between the target and
network output. Many such input/target pairs are used to
adapt a network to a particular function.

Above an input layer and output layer of neurons a network
may incorporate one or more hidden layers of computation
nodes when high network flexibility is necessary. To solve

difficult pattern recognition problems multilayer feedforward
networks or multilayer perceptrons are successfully applied
[13] since a back-propagation algorithm had been proposed
to train them. So, a back-propagation network promises
reliable fault recognition and we also included it in the
comparative analysis.

The network realized in the method 3 has the next
composition depending on the measurement system and fault
classification structures.

The input layer vector includes 6 elements since network
inputs are residuals. The output vector presents the concerned
classes and therefore incorporates 9 elements for the single
type classification and 4 elements for the multiple one.
Network complexity and resolution capability are in close
relation with hidden layers quantity and their nodes numbers
and, to a first approximation, the network has one hidden
layer of 12 nodes.

Differentiable layer transfer functions are of sigmoid type. In
the hidden layer, a tan-sigmoid function is applied; it varies
from -1 to 1 and is typical for internal layers of a back-
propagation network. A log-sigmoid function operates in the
output layer; it varies from 0 to 1 and is convenient to solve
recognition problems.

To put the compared methods under equal conditions the
same reference and testing samples as used before are applied
now as data sources in network training and verifying
processes. Firstly, the training algorithm is performed on the
sample Zr*. Secondly, the trained network passes a

Table 4. Training algorithms. "Cycles" refers to the total
cycle number of training process. Pt and Pt'' mean
probabilities of truthful diagnosis obtained on the
teaching and testing samples correspondingly.

Table 5. False diagnosis probabilities (single type
classification).
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e

0.0300

0.0290

0.0285

0.0280

0.0275

Algorithm

1
2
3
1
2
3
1
2
3
1
2
3
1
2
3

Cycles

383
65

111
485
95

114
598
118
122
836
149
134

1616
212
178

Pt
0.8174
0.8132
0.8174
0.8211
0.8168
0.8213
0.8234
0.8196
0.8209
0.8264
0.8242
0.8234
0.8276
0.8269
0.8267

Time, s

110
37
70

127
44
71

158
49
75

201
56
80

370
70

100

Pt’’
0.8132
0.8090
0.8172
0.8157
0.8126
0.8181
0.8173
0.8149
0.8180
0.8197
0.8159
0.8214
0.8194
0.8198
0.8228

P P

P P

Indices Methods

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

d
9

Pe

        Pe

1
0.139
0.241
0.129
0.255
0.144
0.172
0.166
0.212
0.182

0.1822

   2
0.266
0.248
0.219
0.390
0.224
0.015
0.212
0.243
0.215

0.2258

3
0.170
0.252
0.137
0.250
0.145
0.170
0.143
0.173
0.160

0.1772

P

P



IPN                                                                                                                                                                                                   ESIME

verification stage to compute the probabilistic
trustworthiness indices (see section 4.2.3) corresponding to
the samples Zr* and Zt*.

There are a number of variations on the basic back-
propagation training algorithm. In order to choose the best
one under concrete conditions of fault recognition, twelve
variations were tested under fixed given accuracy e (mean
discrepancy between all targets and network outputs) and
compared by execution time. Three more perspective
algorithms - variable (adaptive) learning rate algorithm
(algorithm 1), resilient back-propagation (algorithm 2), and
scaled conjugate gradient algorithm (algorithm 3) - were
verified additionally for the different accuracy levels e = 0.03-
0.0275, where the value 0.0275 is close to the final obtainable
accuracy. The results given in Table 4 show that the algorithm
1 obviously loses the competition, the algorithm 2 seems to
be a little more rapid than the algorithm 3 while the last is
more reliable on the testing sample. Taking into account our
priority - recognition trustworthiness - the scaled conjugate
gradient algorithm is selected for next calculations.

An influence of the hidden layer node number was examined
too. Above the chosen number 12, the numbers 8, 16, 20
were also verified for options of the chosen back-propagation
algorithm and fixed cycle number 200. The reduction of the
node number from 12 to 8 has demonstrated visible changes
for the worse of the obtainable accuracy Äe=0.00103 and the
probabilities Pt’=−0.0068 and Pt’’=−0.0068. On the other
hand, the augmentation to 16 and 20 nodes has not improved
the algorithm’s characteristics. That is why the node number
12 remains for further calculations.

4.6 Methods comparison

To compare all three methods, the statistical testing of the
methods 2 and 3 preliminarily checked and adjusted has been
performed under the conditions of the method 1 testing and for
the same two classification configurations. The resulting
trustworthiness characteristics - the probabilities of false diag-
nosis (14) – are placed in Table 5 (single type classification) and
Table 6 (multiple type classification). For the method 1 these
probabilities correspond to the data of Table 2 and Table 3.

Firstly, the methods 2 and 3 are compared. They operate with
the same input and output data representation and, from this
point of view, do not have any significant advantages/limitations
one against the other. So, the trustworthiness level and execution
time are only arguments to choose the best method.

The indices presented in Tables 5 and 6 demonstrate
significantly lower probabilities of false diagnosing by the

method 3. Since calculating accuracy for the probability Pe
works out at 0.01, the effect of trustworthiness enhancement is
not a result of statistical simulation errors. The comparative
calculations repeated for other gas turbine operating conditions
prove the conclusion about superiority of the method 3.

As to the methods 1 and 3, the differences between them in
diagnosis trustworthiness are lower. As it can be seen in Tables
5 and 6, these methods differ in the probability  by 0.0037-
0.0050. As the differences are opposite by the sign and smaller
then the calculating inaccuracy, the trustworthiness levels of
the methods 1 and 3 are considered as equal.

However in contrast to the methods 2 and 3, the method 1
applying the Bayesian approach has an advantage to
accompany every diagnosis by its confidence estimation.
Therefore the diagnostic method based on the Bayesian
approach may be recommended for practical application
always when we are able to describe the classes by density
functions; for example, in the case of model-based
classification concerned in this paper. Otherwise, the
techniques like neural networks should be used.

4.7 Perspectives of practical application

Above the current work focused on a method comparing,
numerous investigations were fulfilled by means of a
diagnosing process statistical testing and trustworthiness
indices analysis in order to study other factors that also affect
the gas diagnosing trustworthiness.

The variety of these factors includes
- measurement system structure;
- measured parameters accuracy;
- number and structure of gas turbine operational regimes

including dynamic regimes;
- classification structure and type;

Indices Methods

d
1

d
2

d
3

d
4

Pe

        Pe

1
0.109
0.216
0.060
0.117

0.1256

   2
0.237
0.373
0.051
0.051

0.1790

3
0.104
0.214
0.072
0.217

0.1293

P

Table 6. False diagnosis probabilities (multiple type
classification)
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- joint recognition of gaspath faults and measurement
system proper defects.

Presented trustworthiness analysis may be classified as model-
based since gas turbine models describe a normal behavior and
fault influence. That is why a reasonable question appears how
we could ensure that the obtained results be correct in practice.

To guarantee the results of model-based calculations the
statistical testing is carried out for a wide range of possible
diagnosing conditions and the conclusions are generalized.
In addition, important results are confirmed on real data, if
any. For instance, a practical mode has been proposed [10] to
enhance the base-line function Y

0
(U) and reduce the deviation

errors σY
i
 by maintenance data analysis; the method based on

Bayesian approach was adapted for recognition of physically
simulated gas turbine faults and a real compressor
contamination and has demonstrated a satisfactory accuracy
of the previous model-based realization of the method.

The idea appears of a combined classification: to start a health
monitoring system development and operation with model-
based classes and later, along with maintenance information
accumulation, to introduce one by one the classes formed by
real fault description.

5. Conclusions

In this paper, we discuss a statistical testing of gas turbine
diagnosing process in order to determine and elevate
recognition trustworthiness indices which are averaged
probabilities of true/false diagnosis. A thermodynamic model
serves to simulate gas turbine degradation modes and form a
faults classification. To conduct the trustworthiness analysis
in more general form, two types of gas turbine fault classes
called single and multiple are considered.

Three diagnosing methods functioning inside the statistical
testing procedure are adjusted, verified, and finally compared.
Two of them – the method utilizing Bayesian rule and the
method applying neural networks - have demonstrated an
equally high trustworthiness level and are recommended for
the use in condition monitoring systems.

The presented investigation is a part of total work focused on
the trustworthiness growth of gas turbine diagnosing; the
other investigation lines including an analysis of maintenance
data are noted.
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