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1. Abstract

We propose the vector rank M-type K-nearest neighbor
(VRMKNN) filters to noise suppression and detail
preservation in color image restoration. The proposed
VRMKNN filters are based on the combined RM-estimators
with different influence functions, and the KNN algorithm.
Therefore, we designed the adaptive multichannel non
parametric VRMKNN (AMN-VRMKNN) that usesan adaptive
non parametric approach to determine the functional form of
the density probability of noise into the sliding filtering
window to improvethe performance of the VRMKNN filters.
Numerous simulations illustrate that the proposed filters
exhibit robust and adaptive capability in multichannel
imaging applications. Finally, we present theimplementation
of proposed filters on the DSP TM S320C6711 demonstrating
that they can potentially provide a real-time solution to
quality video transmission.

Key words: multichannel filters, RM-estimators.

2. Resumen (Implementacion en DSP de filtros RM para
supresion de ruido en imégenes a color)

Presentamos los filtros VRMKNN (vector rank M-type K-
nearest neighbor) para supresion de ruido y preservacion de
detalles en restauracion de imagenes a color. Losfiltros pro-
puestos VRMKNN estén basados en |os estimadores combi-
nados RM con diferentes funciones de influenciay el algo-
ritmo KNN. Ademas, disefiamos el filtro adaptivo multicanal
no paramétrico VRMKNN (AMN-VRMKNN) queusaun pro-
cedimiento adaptivo no paramétrico para determinar la for-
ma funcional de la densidad de probabilidad del ruido en la
ventana de filtrado para mejorar el desempefio de los filtros
VRMKNN. Numerosas simulaciones ilustran que los filtros
propuestos presentan capacidades robustas y adaptivas en
aplicaciones de iméagenes de multicanal. Finalmente, pre-
sentamos la implementacion de los filtros propuestos en el
DSPTMS320C6711 parademostrar que éstos potencialmente
pueden proveer una solucion en tiempo real para mejorar la
calidad de la transmision de video.

Palabras clave: filtros de multicanal, simuladores RM.
3. Introduction

There are investigated and published different novel
algorithms applied in the multichannel image processing
during the last decade. One of the useful and promising
approaches being proposed was the multichannel signal
processing based on vector processing [1, 2].

Nonlinear filtering techniques apply the robust order statistics
theory that is the basis for design of the different novel
approachesin digital multichannel processing [1-5].

The acquisition or transmission of digitized images through
sensor or digital communication link is often interfered by
noise. The noiseisusually modeled as an additive noise or a
multiplicative and may be impulsive one. Random additive
noise can occur as thermal circuit noise, communication
channel noise, sensor noise, and so on. Other poisesinclude
quantization noise and speckle in coherent lighting. In color
image processing the assumption of additive Gaussian noise
seldom holds. One of the examples of non-Gaussian noiseis
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impulsive noise, and in this case linear digital processing
techniquesfail [1, 3].

There are many impulsive noise models. Impulses are also
referred to asoutliers. In statistics, outliers can be defined as
observations, which appear to be inconsistent with the pure
data [3]. Common for the models of impulsive noise in the
color images is the appearance of noise as avery small or a
very large value that presents as spots of different color and
values. This type of noise is often called salt and pepper
noise but pure salt and pepper noise that has only extreme
values is very easy to remove from the image because the
maximal or minimal values can to be eliminated [3]. Typical
sources for impulsive noise are channel errors in
communication digital linksor storageerrors.

Different vector based processing filters have been designed
during last yearsin color imaging. For instance, vector order
statistics filters have demonstrated good performance in the
noise removal [1, 2, 4-11]. There are a number of filtering
multichannel algorithms: the vector median filters (VMF),
that realizes the vector ordering calculating their relative
norm difference[2]; thebasic vector directional filter (BVDF),
that employs the directional processing taking pixels as
vectors, and obtaining the output vector that shows a less
deviation of its angles under ordering criterionsin respect to
the other vectors[1, 4]. Other directional filters, such asthe
directional-distance filters (DDF), the generalized vector
directional filters (GVDF), and the distance dependent
multichannel filter (DDMF) use the direction of the image
vectors eliminating some vector with atypical directions
according to criterion used. The output of such the filter
gives the estimate with excellent properties in color
chromaticity sense. The modification of directional filtering
approach is presented by the generalized vector directional
filter with doublewindow (GVDF_DW), wherethedirectional
and in magnitude processing is divided, realizing them in
different windows. Other filters that are used in here too as
the reference ones are the adaptive nearest neighbor filter
(ANNF), and the adaptive multichannel non parametricfilters
(AMNF)[1, 5].

In this paper, we present the new Vector Rank M-Type K-
Nearest Neighbor (VRMKNN) filters. The proposed
VRMKNN have been adapted to color imaging using some
of the RM-filters[12, 13]. Thesefilters provide thefine detail
preservation employing the KNN algorithm [2], and the
combined RM-estimators[12-14] for obtaining the sufficient
impulsive noise suppression in each color channel. The
combined RM-estimators used in the proposed scheme are
described as redescending M-estimators with different
influence functions [2, 15, 16] combined with the R- (me-

dian, Wilcoxon, or Ansari-Bradley-Siegel- Tukey) estimators
[15, 16] for providing better noise suppression. To improve
the restoration performance of VRMKNN we also use an
adaptive non parametric approach determining the functional
form of the density probability of noise from data into the
sliding filtering window [5]. Thesefiltersare called adaptive
multichannel non parametric VRMKNN (AMN-VRMKNN).
Simulation results have demonstrated that the proposed filters
can outperform other color imagefiltersat least for high value
of noise contamination by balancing the tradeoff between
noise suppression and fine detail preservation. The
implementation of the filters was realized on the Texas
Instruments DSP TM S320C6711 [17, 18] to demonstrate that
they can potentially provide a real-time solution to quality
video transmission.

4. Development
4.1 RM-Estimators

The R-estimators form a class of nonparametric robust
estimators based on rank calculations [15]. The median
estimator isthe best estimator when any a priori information
about data Y, distribution shape and its moments is
unavailable [15, 16]

Y 2 {Y(le) + Y(1+N/2)} for even N 1
0. = 1)
Y for odd N

(N+17y)

WhereY(J.) isthe element withrank j, 1 <j <N inthe sample
of size N.

If the probability density function is a symmetrical one, the
Wilcoxon test of signed ranks is asymptotically the most
powerful one and it determines the Wilcoxon order statistics
estimator [15, 16]:

N

Bun =MED{ 12 (Y +Y).1j=12..N} @
i<j

where MED (see eg.(1)) isthe median operation for the set of
al N(N+21)/2 pairs, and Yo Y ae the elements with rank i
and j, respectively.

TheAnsari-Bradley-Siegel-Tukey estimator [15, 16] isother
R-estimator, it can bewritten in such aform:
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J

Orost =MED | | N
=V, +Y,) | =|<i<N

©)

where Y, and Y, ae defined by sameway as (2). The estimator
(3) can berealized by combined use of the estimators (1) and (2).

Huber proposed the M-estimators as a generalization of
maximum likelihood estimators (MLE) [2, 15, 16, 19]. The
standard technique for M-estimate calculation consists of
using of Newton'’s iterative method [2, 15, 16], introducing
the influence function

Jd
w(X.0)=—;~(X.0) @
and the function
w/u, u=#0
W(U) - c, u=0 ©)

and presents the iterative procedure for estimate as follows:

ZN:W((YI _éw(q—l)) / Sb)Yl

0@ — i=Nl
S WY, -6¢?)/s,) ©
i=1

Where é(‘” isthe M-estimate of the samplelocation parameter 6
onastepqand § isascaeegtimate; Y, isthe input data sample,
v isthenormaized influence function P \I/( ) Y~(Y)

is the primary data sample, and (Y, — s NS, lsthe
argument of w(+). Usually §© = MED{Y,} isthemedian of
primary data and

s, =MED{]y

—0©® |} ©)

isthe median of the absolute deviations from the median [ 15,
19, 20]. Sometimes, the eg. (6) can besimplified to such aone-
step estimator [2, 20]:

It is evident that (8) represents the arithmetic average of
Z ¥ (Y, - MED{Y,}), whichis evaluated on the interval
[I—=1r ,r'1, where the parameter r is connected with restrictions
on the range of ¥(Y), for example, as it has been donein
case of the simplest Huber’s limiter type M-estimator

7.(Y)= min(r, max (Y, r))=[Y], for the normal
distribution contaminating by another one with heavy
‘tails’ [15, 16].

Another way to derivethefunction v (Y ) istocuttheoutliers
off the primary sample. This leads to the so-called lowered
M-estimates. Hampel proved in[16] that the skipped median

, <
W med(r) (Y)= { (an(Y) ||$I|>: 9

isthe most robust lowered M-estimate. Below we also usethe
simple cut (skipped mean) influence function

Y, [Y|<r

0, |V>r (10)

I//cut(r)(Y) :{

There also exist other known influence functions in the
literature. We propose to use the Hampel's three part
redescending function, the Andrews sine function, the
Tukey biweight function, and the Bernoulli function [2,
15, 16, 21].

The proposal for enhancement of the robust properties of
M-estimators by using the rank estimates consists of the
application of the procedure similar to the median average
instead of arithmetic one. We present in here in opposite to
used before non-iterative RM-estimation [20] the next
iterative RM-estimators that follow from eg. (6):

0@ =MED{Y7 (Y, 6@ )} (11)

N
Z Y M ED{Y }) © 0Dy =M E]D{; [Yl//(Yi —_gD )+ Yj&(Yj gD )]}
Oy = I<
ZN: (Y, ~MED{Y, }) (12)
i=1
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0 apstv =
) 1<i< {g}
MED st gt omol [Eeson
(13)

wherei, j=1,2,...,N, Y, and Y areinput data samples; i is

the normalized influence function ¥: l/j(Y):Yﬁ(Y):

initial estimateis @ = MED({Y, }; and Y, isthe primary
data sample [12-14].

The presented estimators are the iterative combined RM-
estimators. The R-estimators provide good properties of
impulsive noise suppression and the M-estimators use the
different influence functions according to the Huber scheme,
providing better robustness. So, it is expected that the
performances of combined RM-estimators can be better in
comparison with original R- and M- estimators[12-14].

4.2. Multichannel RM-filters

To increase the robustness of standard filters, it is possible to
use different methods known in the robust-estimate theory,
for example, the censoring or others[15, 16, 20]. The known
proposal to increase the quality of the filtration via the
preservation of the edges and detailsin the image consists of
the use of K elements of the sample whose values are closest
to the central pixel value of adliding filter window. Thisleads
to thewidely known KNN (K-nearest neighbor pixels) image-
filtering algorithm[3].

The proposed VRMKNN employs an idea of the KNN
algorithm. The following representation of the grayscale
scalar KNN filter is often used

N N
Fnn =Zaixi Zai (14)
i=1 i=1
with
L, i x = XI<T|Y]<r
- . 15
0, otherwise (15)
where T is athreshold, and x; is the input data sample in a

sliding window, and x is the central element of the window
to be estimated.

For convenience, the Vector KNN filter (VKNN) is written
below asfollows:

~ 1 N
Ok :K_Z w(y)y,

c i=1

(16)

wherey. arethe noisy image vectorsin sliding filter window,
whichincludesi = 1,2,...,N (Nisodd) vectorsy,, y,, ..., Y,
located at spatial coordinatesin the filter window, and w(y,)
is the influence function that is defined as

if y. areK_ sampleswhose values are closest
w(y,)= L tothevalueof the central sampley,.,.,
0, otherwise

For improving the robustness of the VKNN we proposed to
use the iterative RM-estimators (11)-(13) adapted for
multichannel imaging.

So, the Vector Rank M-type K-Nearest Neighbor filter
(VRMKNN) can bewritten as:

HA\(/CI‘\/)IMKNN = MED{g(q)} (17)
- q@ 4 q@
0\(/(3/3/MKNN = MED{—g Zgl } (18)
- Ry ™. 1<k<[K, /2]
Ounssraknn = MIED R(k)(q) " R(l)(q) [KC/2]< kI <K,
2 b
(19
where 6\(/?\/)IMKNN’ H\(/%MKNN and H\(/!QBSTMKNN are the

VMMKNN, VWMKNN and VABSTMKNN outputs,
respectively; g and g,@ arethe setsof K_ numbers of vectors
y,which are weighted by value in accordance with the used
influence function Y/(Y,) to the estimate obtained at
previous step é\(fg\}l)KNN in adliding filter window; R(q)(k> and
R, represent values of vectors having k and | ranks among
the sliding window elements g which are the members of
the set of K_ number of vectors that are weighted in

accordance with the used influence function y/(Y;) and are
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the closest to the estimate obtained at previous step

é\(/qFéaKNN ; Y, are the noisy image vectors in a sliding filter

window, which include vectors y,, y,,..., y,, in the filter

window; Oyman =Yous IS the initial estimate that is

equal to central element in a dliding window; q is the index
of the current iteration; K_ is the number of the nearest

neighbor vectors calculated in such aform [13, 22, 23]:

Kc = lein +a- Ds(y(N+1)/2)J < Kmax (20)

where a controls the fine detail preservation; K . is the
minimal number of the neighbors for noise removal; K __ is
the maximal number of the neighborsfor edge restriction and
fine detail smoothing; and D_ (Y(N+1) ») istheimpulsive detector
defined asfollows[12, 13]:

MED -V '
Ds(y(N+l)/2)=[ {|y(N+l)/2 yl|}]+{ MAD }

MAD MED{y, }
(21)

where MED{y}is the median of the input data set y, in a
sliding window, and MAD is the median of absolute
deviationsfrom median in the same window defined after eq.
(6)[2,15].

The algorithm finishes when 8% =:8l&D (the

abbreviations VRMKNN in the filters denotes the
VMMKNN, or VWMKNN, or VABSTMKNN).

The impulsive detector (21) depends on local statistics
properties of the contaminated image. So, the current value
K. calculated for uniform image areas with low intensity
can be extremely large, that marks the possibility to
increase data set and suppress better the impulsive noise.
In this case the size of sliding window should be larger
one. After numerous simulations we proposed for
improving the noise removal ability and decreasing the
processing time to use the standard median filter. Thus,
when K_ is sufficiently large, the median filter may be
used. When K_ > 7 and K_ > 350, the VRMKNN filters
may be replaced with 3x3 median filter and 5x5 median
filter, respectively. The parameter K . eval uates the number
of pixels into the calculus of estimation KNN in an

adaptive form, it fixes this number according with the lo-
cal data activity. When the calculated value of K _ is more
than seven pixels, itisclear that the filtering window could
be localized in a part on image with longer fine detailsin
the sliding window, so, it is not necessary to use KNN
estimator. In here, we can employ the 3x3 median filter
because the results of the KNN estimation using 7 pixels
from the total of 9 pixels produces similar resultsasin the
case of 3x3 median filter. Additionally, the median
estimator requires less number of calculus in comparison
with the KNN estimator. Therefore, if K_ presents
sufficiently large values than the number of pixelsin a
5x5 filtering window is due that there are homogeneous
areas in the filtering window. So, in this case we can
employ the 5x5 median filter to suppress the noise in absent
of fine detail objects.

The proposed filtering approach employs an iterative
procedure, which followsfrom classical iterative M-estimate
procedure [2]. Unlike a classical M-estimate, which uses
the median of a sample data as the initial approximation,
the proposed algorithm forms the estimate based on the
center element of the sliding window astheinitial estimate
to preserve the small feature of an image. At the current
iteration g the procedure uses avector datasampleto form
a set of elements whose values are most close to the
estimate cal culated at the previous step. Subsequently, the
procedure cal culates a median of this set or more complex
estimate according to the presented before RM-estimators
(18) and (19). Then, it uses such a median at next (q+ 1)th
step as the previous estimation. The number of neighbors
K. in the vector sample with closest values is calculated
prior to iterations and is kept unchanged for every sliding
window. It isameasure of thelocal data activity within the
sliding window and of the presence of impulsive noise at
its center element. The number K is calculated in this
manner for each element i in order to fit the filter to local
characteristics of an image, which helps to preserve the
small feature. Iterations have to be terminated when the
current estimate becomes equal to the previous one. From
simulations we found that the iterations converge after one
or two iterations, but their maximal number may be up to 4-
5 depending on image nature.

To improve the impulsive noise suppression and detail
preservation performances of VRMKNN filters we have
introduced the AMN-VRMKNN that is based on adaptive
non parametric approach and determines the functional
form of density probability of noise from datain asliding
filteringwindow [2]. So, AMN-VRMKNN is presented by
combining the adaptive multichannel non parametric filter
according with the reference [5] and the VRMKNN.
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The proposed AMN-VRMKNN can bewritten as:

_ y-— y|
S VRMKNN " ' K( h j
X(Y) Amn-VRMKNN =IZX| - '
)

(2

Where xRN values represent the proposed VRMKNN
providing the reference vector according with the proposed
scheme[5], y isthe current noisy observation to be estimated
fromgivensety,, andy, arethenoisy vector measurements, h
is the smooth parameter that is determined as:

(23)

(Sl

wherey 7y, for Vy;, j=12...N,[ly -yl ., isthe

absol ute distance (L, metric) between two vectors, n*™ with
0.5 > p > 0 guarantees the satisfaction of the conditions for
an asymptotically unbiased and consistent estimator [5], M
isthe dimensionality of the measurement space (M = 3 when
the multichannel image isan RGB color image) [5], and the
function K(y) isthe kernel function that has the exponential
form K(y) = exp(-|y|]) in the case of impulsive noise. The
most common choices for the density approximation are
kernels from symmetric distribution functions, such as the
Gaussian or double exponential. For the simulation studies
reported in this paper, the exponential kernel K(y) = exp(-|y|)
was selected [5].

5. Experimental Results
5.1. Objetive Criteria

We have conducted a set of the simulation experimentsin
order to evaluate the VRMKNN and AMN-VRMKNN and
compare their performances against the performance of
some other color filtering techniques proposed in the
literature [1, 4-11]. The results of these experiments are
presented below. The criteria used to compare the
restoration performance of various filters were the peak
signal-to-noise ratio (PSNR) for the evaluation of noise
suppression, the mean absolute error (MAE) for
quantification of edges and fine detail preservation, and
the normalized color difference (NCD) for the
quantification of the color perceptual error [1-11]:

2
PSNR =10- Iog{(zss) } ,dB
MSE

(24)
1 M, M, o o
MAE= 220 D-Y@ D) 25
12 =l j=1
where
1 MM 2
MSE = XV D-v@ DL (28
M1M2 i=1 j=1 :

is the mean square error, M,, M, are the image dimensions,
y(i,j) is the 3D vector value of the pixel (i,j) of the filtered
image, y(i,j) is the corresponding pixel in the original
uncorrupted image, and ”'”Ll’ ||.||L2 arethe L, and L ,-vector
norms, respectively;

NS

NCD =
27

M; M,
2.2,
i=1 j=1
M; M,
2 2B,
i=1 j=1 2

. « . )2 «\2 .« \2 2
where ||AELUV(I, j)||L2 = [(AL @, j)) +(Au ) +(AV ) ]V
isthenorm of color error; AL, Au", and Av" arethedifference
inthe L", u’, and v components, respectively, between the
two color vectors that present the filtered image and
uncorrupted original one for each a pixel (i,j) of an image,
and [IE°,, (i)l = [(L')? + (@) + (V)7 is the norm or
magnitude of the uncorrupted original image pixel vector in
the L'uv' space. As it has been discussed in the different
works [1, 8-11], the NCD objective measure expresses well
the color distortion.

5.2. Discussion of the Results

There are existed lots of filtering approaches in color
imaging. Because it is difficult to analyze all the existing
algorithms, the objective performances results are compared
in here with some reference filters commonly used in the
literature. So, the efficiency measures can be judged via
comparison of the experimental results obtained using the
proposed filtering approach with some classical filtersin
the color images such asVMF, GVDF, AMNF, etc. Through
these filters, the presented filtering class can be compared
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with other filtering schemes, because VMF, GVDF, AMNF
is usually treated as comparable ones. To determine the
restoration properties and compare the qualitative
characteristics of various color filters, the proposed 3x3
VRMKNN (VMMKNN, VWMKNN, and VABSTMKNN)
with simple, Hampel“sthree part redescending, and Andrew’s
sine influence functions, the 3x3 AMN-VRMKNN filter
(AMN-VMMKNN) with simpleinfluencefunction, and also
the 3x3 vector median (VMF), 3x3 ai-trimmed mean (o-TMF),
3x3 generalized vector directional (GVDF), 3x3 adaptive
GVDF (AGVDF), 5x5 doublewindow GV DF (GVDF_DW),
3x3 multiple non-parametric (MAMNFE), 3x3 adaptive
multichannel non parametric (AMNF), 3x3 adaptive
multichannel non parametric vector median filters (AMN-
VMF), and newest two ones hamed in here adaptive VMF
(AVMF) [7] and fast adaptive similarity VMF (VMF_FAYS)
[8] were simulated. The presented filters were computed
and used according with their references|[1, 2,4, 5,7, 8] to
compare them with the proposed filtering approach. The
reason of these filters choosing to compare with the
proposed ones is that their performances have been
compared with various known color filters and they were
used as the reference ones.

The 320x320 RGB color (24 bits per pixel) widely used test
images «Lena», «Mandrill» and «Peppers», with different
texture character were corrupted by impulsive noise with
intensitiesthat changein the range from 0% (noise free) to

10% with the step size 2%, and from 10% to 50% with the
step size 5% for spike occurrence in each a channel. So,
numerical results occupy wide range of possible noise
corruption. The Table 1 shows some comparative
restoration results for several proposed and referencefilters
presenting the noise suppression performance (PSNR) in
the case of the test image «Mandrill». The Table 2 exhibits
the simulation results for all the objective criteria (NCD,
MAE and PSNR), employing the proposed filtering approach
and some better reference filters according to Table 1.
Simulation results (see Table 1) clearly show that VMF_FAS
and VWMKNN filter with simple cut influence function are
the best algorithms in noise suppression for low noise
intensity (from 2% to 10%). In high impulsive noiseintensity
(from 25% to 50%) the better PSNR criterion values have
been obtained by algorithms AMN-VMMKNN and
VMMKNN with simple cut influence function, and for 15%,
and 20% of spike occurrence the best PSNR performanceis
presented by VMMKNN (simple cut) filter. Analyzing the
values of PSNR criterion (Table 1) we can conclude that the
proposed filtering scheme shows an advantage in the PSNR
performance in comparison with cases when other filters
are used for high spike occurrence, more than 10%-15%.
For example, for test image «Mandrill» the scoring is
changed from 0.53dB (20%) to about 1.27dB (30%), and to
about 3dB for high noise intensity. The similar results have
been obtained for another test images «Peppers» and
«Lena».

Table 1. PSNR in dB for different filters applied in case of test image "Mandrill".

Impulsive : AMN-
. Noise VMF | VMF FAS| AVMF | GVDF |GVvDFDW V'\é':ﬁ;':'\‘ V\gﬁg':'\‘ VMMKNN

ercentage Simple

2 24.111 20268 | 24390 | 21038 | 21208 | 24772 | 29039 | 23680

4 24.053 27736 | 24316 | 20972 | 21260 | 24644 | 28079 | 23651

6 23.973 26.888 | 24213 | 20930 | 21208 | 24515 | 27164 | 23601

8 23.873 26044 | 24000 | 20861 | 21172 | 24380 | 26374 | 23543

10 237784 | 25204 | 23974 | 20728 | 21105 | 24202 | 25502 | 23476

15 23.347 23680 | 23480 | 20295 | 20954 | 23774 | 23729 | 23285

20 22,793 20473 | 22881 | 19769 | 20765 | 23202 | 22713 | 23072

25 22,041 21013 | 22001 | 1899 | 20467 | 22513 | 20891 | 22792

30 21.180 20113 | 21209 | 18088 | 20160 | 21777 | 19772 | 22467

35 20171 10015 | 20181 | 17119 | 19645 | 20925 | 18754 | 22007

40 10.062 17899 | 10067 | 15990 | 18885 | 19851 | 17672 | 21331

45 17.976 16947 | 17978 | 14930 | 18122 | 18824 | 16722 | 20575

50 16.952 16001 | 16953 | 14085 | 17218 | 17847 | 15885 | 19.764
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Table 2. Comparison simulation results for NCD, MAE and PSNR performances presented by proposed and reference filters.

Imﬁg:ive Algorithm NCD MAE PSNR
Mandrill Lena Peppers | Mandrill Lena Peppers | Mandrill Lena Peppers
AVMF 0.0293 0.0096 0.008 7.36 2.39 1.97 24.27 30.95 30.81
VMF_FASr 0.010 0.0045 0.0045 254 1.194 1.14 27.21 31.85 31.19
5 AMN-VMMKNN 0.035 0.0195 0.017 10.767 5.03 4.42 23.62 29.21 29.21
VMF 0.034 0.016 0.012 8.71 4.29 3.14 24.02 30.07 30.30
VWMKNN Simple | 0.019 0.0096 0.008 4.96 2.55 2.114 27.69 31.45 30.91
VMMKNN Simple | 0.034 0.0169 0.014 8.74 4.44 3.54 24.58 30.22 30.34
AVMF 0,031 0,0117 0,0095 7.87 2.97 2.49 23.97 30.09 29.79
VMF_FASr 0,0159 0,0086 0,0081 4.06 2.35 2.07 25.29 28.80 29.01
AMN-VMMKNN 0,0432 0,020 0,0182 11.04 5.23 4.66 23.48 28.94 28.71
VMF 0,0349 0,0172 0,0132 8.96 4.57 3.49 23.78 29.46 29.44
VWMKNN Simple | 0,0226 0,0128 0,0121 6.13 3.56 3.212 25.50 28.13 27.42
VMMKNN Simple | 0,0359 0,0179 0,0146 9.19 4.73 3.847 24.20 29.64 29.62
AVMF 0,0334 0,0141 0,0119 8.60 3.63 3.13 23.48 29.06 28.66
VMF_FASr 0,0223 0,0135 0,0142 5.83 3.70 3.70 23.68 26.28 25.63
15 AMN-VMMKNN 0,0443 0,0213 0,0193 11.38 5.46 4.92 23.28 28.59 28.32
VMF 0,0363 0,0185 0,0151 9.43 4.92 3.95 23.35 28.64 28.44
VWMKNN Simple | 0,0268 0,0166 0,0169 7.55 4.75 4.59 23.73 25.87 25.025
VMMKNN Simple | 0,0378 0,0191 0,0162 9.76 5.07 4.26 23.77 28.93 28.71
AVMF 0,0362 0,0166 0,0150 9.49 4.41 3.92 22.88 27.83 27.30
VMF_FASr 0,0354 0,0178 0,0161 7.69 5.00 4.84 22.47 24.80 24.45
20 AMN-VMMKNN 0,0455 0,0222 0,0209 11.77 5.74 5.26 23.07 28.18 27.82
VMFE 0,0384 0,0200 0,0172 10.11 5.42 4.53 22.79 27.58 27.19
VWMKNN Simple | 0,0323 0,0207 0,0199 9.07 6.120 5.34 22.71 24.06 24.42
VMMKNN Simple | 0,0399 0,0206 0,0183 10.48 5.54 4.76 23.20 27.96 27.68
AVMF 0,0398 0,0197 0,0187 10.61 5.34 4.89 22.09 26.41 25.83
VMF_FASr 0,0357 0,0228 0,0248 9.72 6.50 6.44 21.01 23.34 2291
AMN-VMMKNN 0,0470 0,0235 0,0229 12.29 6.11 5.69 22.79 27.76 27.35
2 VMF 0,0412 0,0222 0,0204 11.05 6.07 5.35 22.04 26.28 25.78
VWMKNN Simple [ 0,0373 0,0255 0,0284 11.01 7.57 7.64 20.89 2271 21.93
VMMKNN Simple | 0,0426 0,0225 0,0213 11.36 6.09 5.49 22.51 26.89 26.31
AVMF 0,0439 0,0236 0,0239 12.00 6.53 6.27 21.21 24.89 24.02
VMF_FASr 0,0427 0,0279 0,0316 11.84 8.09 8.29 20.11 22.19 21.53
AMN-VMMKNN | 0,0487 0,0253 0,0266 12.91 6.69 6.48 22.47 27.04 26.42
%0 VMF 0,0449 0,0253 0,0250 12.30 7.04 6.58 21.18 24.83 23.99
VWMKNN Simple | 0,0429 0,0303 0,0348 13.03 9.23 9.55 19.77 21.44 20.61
VMMKNN Simple | 0,0456 0,0252 0,0256 12.44 6.92 6.63 21.78 25.52 24.63
AVMF 0,0546 0,0393 15.88 10.07 10.37 19.07 21.45 20.54
VMF_FASr 0,0592 0,0509 17.41 12.68 13.59 17.90 19.49 18.65
AMN-VMMKNN 0,0546 0,0384 15.04 8.74 9.06 21.33 24.86 24.07
40 VMF 0,0550 0,0397 15.99 10.26 10.48 19.06 21.44 20.54
VWMKNN Simple | 0,0569 0,0520 17.98 13.61 14.46 17.67 19.05 18.24
VMMKNN Simple | 0,0543 0,0393 15.60 9.60 10.02 19.85 22.43 21.40
AVMF 0,0691 0,0484 0,0606 21.37 15.07 16.33 16.95 18.68 17.70
VMF_FASr 0,0771 0,0586 0,0755 24.07 18.57 20.59 16.00 17.28 16.33
50 AMN-VMMKNN 0,0639 0,0419 0,0571 18.54 12.19 13.39 19.76 22.37 21.34
VMF 0,0692 0,0485 0,0607 21.42 15.13 16.36 16.95 18.69 17.70
VWMKNN Simple | 0,0736 0,0593 0,0745 24.09 19.40 20.88 15.89 16.99 16.20
VMMKNN Simple | 0,0664 0,0452 0,0596 20.27 13.72 15.21 17.85 19.76 18.63
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Analyzing the data presented in Table 2 one can see that in
low impulsive noiseintensity (5%) the newest filter VMF_FAS
has some advantagein comparison with filtersfollowing from
the proposed approach and another reference filters, VMF
and AVMF in values of all objective criteria. For high noise
corruption intensity when spike occurrenceismorethan 15%
t0 20% (10%, in case of test image «Mandrill») thea gorithms
following from the proposed filtering approach have
presented the best performancesin PSNR criterion. One can
see that the NCD and MAE performances presented in this
tablearein favor of newest filtersVMF_FASand AVMF for
low impulsive noise intensity, less than 20%. For high
impulsive noise corruption it isdifficult select the best filter.
We can only notice that for noisy type images, such as
«Mandrill», the NCD performance values of theVMF_FAS
filter and proposed VWMKNN (Simple) filter arevery similar
ones. Finally, for very high impulsive noise corruption when
the percentage is 40% or more the better MAE and NCD
performance values are presented by proposed AMN-
VMMKNN filter. It is necessary to notice that when the
objective criteria MAE and NCD show some advantage in
favor of thefiltersVMF_FASor AVMF, itsPSNR values are
less from 0.7 dB to 1.5 dB in comparison with that ANF-

VMMKNN filter gives.The presented comparison of the
objective criteria shows that the restoration performances of
VRMKNN and AMN-VRMKNN often outperform other
analyzed filters, at least for high impulsive noise corruption,
morethan 15-20 %.

Figure 1 and 2 shows the subjective visual quantities of
restored zoom part of color images «Lena» and «Peppers»
with spike occurrence of 20% and 30%, respectively. From
these figures we observe that the proposed VMMKNN and
AMN-VMMKNN provide better impul sive noise suppression
and detail preservation in comparison with the newest AVMF
and VMF_FASfilters that present the better visual qualities
among the referencefilters.

The parameters for VRMKNN and AMN-VRMKNN filters
and influence functions were found after numerous
simulations in different test images degraded by impulsive
noise. The values of parameters of the proposed filters were
0.5<a<15, K, =5, and K__=8, and the parameters of the
influence functions were: r<81 for Andrews sine, and a=10,
<90 and r=300 for Hampel three part redescending. The
idea was to find the parameters values when the values of

Fig. 1. Subjective visual quantities of restored zoom part of color image "Lena" , a) Original image, b) Input noisy image corrupted by
20% impulsive noise in each a channel; c) AVMF filtered image; d) VMF_FAS filtered image; €) VWMKNN filtered image (Simple), f)
VMMKNN filtered image (Simple), g) AMN-VMMKNN filtered image, and h) VMF filtering image.
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criteria PSNR and MAE would be optimal. The simulation
results have shown that the best performances were obtained
when K . >5and a > 2, respectively. The parameters o, f3,
and r were obtained for different influence functions, for
example, in the case of the Hampel function the optimum
value o was equal to 14 for image «Mandrill», 10 for image
«Lena», and 12 for video sequence «Miss America», and the
valuer ischanged from 300 for «Mandrill», 280 for «Lena»,
and 290 for «Miss America». Therefore, there are some
variations of about £10% of PSNR performance with the use
of other parameter values which are different ones than they
arepresented here. Finally, in this paper we have standardized
these parameters as the constants to realize the
implementation of the proposed algorithms for real-time
applications.

Theruntime analysis of variousfilterswasrealized using the
Texas|nstruments DSP TM S320C6711. ThisDSP hasaper-
formance of up to 900 MFLOPS at a clock rate of 150 MHz
[17]. The filtering algorithms were implemented in C
language using the BORLANDC 3.1 for all routines, data
structure processing and low level 1/0 operations. Then, we
compiled and executed these programs in the DSP

TMS320C6711 applying the Code Composer Studio 2.0
[18].

According to the restoration performance results obtained in
the Tables 1 and 2 their processing time values are depicted in
the Table 3. The processing time in seconds includes the time
of acquisition, processing, and storing of data. Analyzing this
Table we found the following results: the processing time of
proposed VRMKNN with different influence functions has
values in the range from 0.3 to 0.5s. In this table we present
only the processing time for simple cut influence function
because other functions present similar results. The processing
time values of newest filterswerefor AVMF 0.1377 s, and for
VMF_FAS0.22s. Thetimes of proposed VMMMKNNN and
VWMKNNN are less than for classical reference filters with
exception of VMF, a-TMF, and AMNF, and are slightly more
thanfor AVMF and VMF_FAS. The processing time val ues of
AMN-VMMKNN arelarger than for any another filter, but asit
has been proven such afilter presents the better performance
for high noise corruption.

We can also conclude that the proposed VRMKNN can
process up to 5 images of 320x320 pixels per second

Fig. 2. Subjective visual quantities of restored zoom part of color image "Peppers" , a) Original image, b) Input noisy image corrupted by
30% impulsive noise in each a channel; c) AVMF filtered image; d) VMF_FAS filtered image; e) VWMKNN filtered image (Simple), f)
VMMKNN filtered image (Simple), g) AMN-VMMKNN filtered image, and h) VMF filtering image.
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depending on the influence function applied. The processing
time performance of VRMKNN depends on the image to be
processed and do not almost vary for different noise level.
These values depend on the complex cal culation of influence
functions and parameters of the proposed filters.

We also applied the proposed filters to process the video
signals. Since most video sequences have high correlation
between consecutive frames, it isclear that the 3-D filtering
that uses neighbor frames can be more efficient than the 2-
D filtering, at least in terms on PSNR performance [13].
Usually, the traditional methods of 3D filtering employ the
central (in time) sliding window and other two neighbor
ones that follow before and after the central. Depending on
the applied algorithm it could be used or several pixels
from each an additional window, or, maybe only central
ones. It is not difficult to realize in any multichannel
algorithm such an idea of 3D filtering. It is clearly that the
including more pixels should increase the processing time
for applied algorithm. It is necessary to notice that, there
are some applications such as computer vision systems or
medical imaging where the consecutive frames of a video
sequence have no any correlation, or, as in some medical
applications, itisno permission to useits. For these reasons
we only investigated 2-D image processing algorithms in
the case of the video sequences showing its potential

performances when any a priory information about the
sequence is absent.

The QCIF (Quarter Common Intermediate Format) video co-
lor sequences"MissAmerica', "Flowers', and "Foreman" have
been processed to demonstrate that the proposed algorithms
can potentially provide a rea-time filtering solution. This
picture format uses 176x144 (24 bits per pixel) luminance
pixels per frame. The test video color sequences were
contaminated by impulsive noise with different percentage
of spike occurrence in each a channel. The restoration
performances (PSNR, MAE, and NCD) intheform of itsmean
values and root mean square (rms) ones over the whole video
sequence "Flowers" are presented in the Table 4. This Table
shows the comparison results for different reference and
proposed filters applied to process the sequences "Flowers'
contaminated by 5%, 10%, and 20% impulsive noise. One
can see that for low impulsive noise contamination (5 and
10%) the better performances are achieved by VMF-FAS or
AVMF filter. In the same time we can conclude that noise
suppression measures (PSNR and NMSE) obtained by
proposed filtering technique are often very similar to
achieved ones by mentioned reference filters. In the case of
20% of impulsive noise contamination the AMN-
VMMMKNN and VMMKNNN (Simple) are the best
algorithmsin color noise suppression measures. Because the

Table 3. Processing time for different filters on the color images "Mandrill", "Lena", and "Peppers"
degraded by 10, 20, and 30% of impulsive noise, respectively.

Processing time

Algorithm Mandrill Lena Peppers
VMF 0.039 0.039 0.039
a-TMF 0.087 0.087 0.087
GVDF 0.533 0.564 0.565
AGVDF 0.505 0.620 0.626
GVDF_DW 0.720 0.721 0.723
MAMNFE 0.832 0.832 0.832
AMNF 0.095 0.095 0.095
AMN-VMF 0.648 0.648 0.648
AVMF 0.137 0.137 0.137
VMF_FAS 0.220 0.220 0.220
AMN-VMMKNN Simple 3.666 3.687 3.726
VMMKNN Simple 0.311 0.296 0.316
VMMKNN Andrew 0.208 0.199 0.227
VMMKNN Hampel 0.181 0.199 0.196
VWMKNN Simple 0.499 0.435 0.477
VWMKNN Andrew 0.751 0.756 0.762
VWMKNN Hampel 0.413 0.398 0.409
VABSTMKNN Simple 0.298 0.286 0.315
VABSTMKNN Andrew 0.346 0.320 0.354
VABSTMKNN Hampel 0.322 0.264 0.355
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frames in the sequences have different image texture and
changing object structure analyzing whole video sequence
we can justify the robustness of the proposed algorithms in
noise suppression and fine-detail preservation ability.

Table 5 presents the processing time values of the all frames
of sequencesfor several filtersin the case of use of 150, 120,
and 400 frames of video sequences «Miss America»,
«Flowers», and «Foreman», respectively. One can see from
this table that the processing times of proposed AMN-
VMMKNN technique have larger valuesin comparison with
other filters usage. The proposed VRMKNN can process up
to 14 frames per second depending on employed influence
function. The VMMKNN (Hampel influence function) has
ability to process any sequence investigated with speed from
10 upto 14 frames per second. Figure 3illustratesthefiltered
image showing subjective visual quality for the sequence

«Flowers» confirming good quality of the processed frame
by proposed techniques.

Itisclearly that in case of animagethat has 3 or 4 timesless
than 320x320 pixelsthe proposed VMMKNN and VWMKNN
filters can preserve the edges and small-size details, and
removeimpulsive noise sufficiently well in comparison with
other filters practically with standard film velocity for
computer vision applications.

Finally, numerous simulation results show two important
criteriato choose the multichannel RM-filter type: restoration
performance and processing time. We propose to use the
VMMKNN or VWMKNN when it isnecessary to realize on-
line processing, for example, for video color sequences,
because such the filters have the minimum processing time.
In this case, the simple cut influence function into the

Table 4. Mean and root mean square values for criteria PSNR, NCD, and MAE over the whole video
sequence "Flowers" for different impulsive noise contamination.

Impulsive PSNR NCD MAE

noise Algorithm

Percentage Mean | RMS Mean | RMS Mean | RMS

VMF 27,67 | 04342 00113 | 00010 53542 | 0,3740

GVDF 2554 | 03297 00144 | 00012 67207 | 0,3759

AMNF 2561 | 04050 00156 | 0,0012 7,4921 | 0,4016

5 AVMF 28,00 | 04610 0,0091 | 0,0009 43030 | 03375

VMF-FAS 3061 | 05409 00031 | 00003 1.4689 | 01563

AMN-VMMKNN Simple 2536 | 03706 0,0159 | 0,0013 7,5084 | 0,3877

VMMKNN Simple 27,87 | 04028 00119 | 0,0011 57233 | 0,3864

VMMKNN Simple 2939 | 02846 0,0063 | 0,0005 3,1507 | 0,1605

VMF 27,08 | 03848 00120 | 0,0011 57464 | 0,3954

GVDF 2436 | 03489 0,0156 | 0,0011 74187 | 0,3335

AMNF 2540 | 02940 0,168 | 00012 8,917 | 0,3934

10 AVMF 27,32 | 03985 00102 | 0,0010 4,8792 | 0,3563

VMF-FAS 27,71 | 03201 0,0058 | 0,0004 27550 | 0,1252

AMN-VMMKNN Simple 2547 | 02770 00164 | 00013 7,7487 | 04125

VMMKNN Simple 27,20 | 03601 00126 | 0,0011 61614 | 0,4004

VMMKNN Simple 2586 | 03296 0,0097 | 0,0006 49352 | 0,1798

VMF 2502 | 03377 00145 | 0,0013 7,759 | 0,4556

GVDF 21,83 | 05884 0,193 | 0,0006 95250 | 0,3461

AMNF 2357 | 02713 00216 | 00012 10,9625 | 0,3947

AVMF 2512 | 03406 0,0134 | 00012 65605 | 0,4322

D VMF-FAS 2366 | 02630 00123 | 0,0008 59295 | 0,2401

AMN-VMMKNN Simple 2513 | 0,3069 0,0178 | 00015 85624 | 04654

VMMKNN Simple 2521 | 02766 00150 | 0,0012 7,5060 | 0,4316

VMMKNN Simple 21,35 | 03761 0,0165 | 0,0004 8,6580 | 0,3147
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VMMKNN is more convenient for applications because it
provides |less processing time values. For other applications
in the case of high impulsive noise corruption werecommend
the use of AMN-VMMKNN due that it provides the better
performance in noise suppression and detail performance in
comparison with other filters but the processing time values
can be sufficiently large.

5. Conclusions

Inthis paper, thenovel VRMKNN and AMN-VRMKNN filters
for impul sive noise suppression and fine-detail preservation
in color image have been provided. Thedesigned VWMKNN
and VMMKNN have demonstrated good quality of color
imaging as fixed image, as sequences, both, in objective and
subjective sensein the most of the casesfor middleimpulsive
noiseintensity corruption (from 8% to 15-20%) and outperform
different known color imaging algorithms. Another proposed
filter, AMN-VRMKNN uses an adaptive non parametric
approach and can provide good impul sive noise suppression
for high level of noise contamination, more than 20-25%.

The designed VRMKNN filters can potentialy provide aredl-
time solution to quality video transmission. The processing time

can bereduced if we utilizeaDSP with better performance than
that used here, for examplethe TM S320C8X Multiprocessor DSP
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