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1. Abstract

The paper proposes a complete neural solution to the direct

vector control of three phase induction motor including real-

time trained neural controllers for velocity, flux and torque,

which permitted the speed up reaction to the variable load. The

basic equations and elements of the direct field oriented control

scheme are given. The control scheme is realized by nine

feedforward neural networks learned by real-time Backpropagation

or off-line Levenberg-Marquardt algorithms with data taken by

PI-control simulations. The graphical results of modelling show

a better performance of the neural control system with respect

to the PI controlled system realizing the same general control

scheme.

Key words: Modelling and Simulation, Induction Motor, Field

Oriented Control, Direct Vector Control, Neural Networks,

Levenberg - Marquardt Learning, Backpropagation.

2. Resumen (Control vectorial neuronal directo adaptable
de un motor trifásico de inducción)

El artículo propone una completa solución neuronal al control

vectorial directo de un motor trifásico de inducción que

incluye controladores neuronales de velocidad, flujo y torque

entrenados en tiempo real, lo cual permite acelerar la reacción

a carga variable.  Las ecuaciones básicas y los elementos del

esquema de control directo de orientación del campo

magnético, están dados. El esquema de control esta realizado

a partir de nueve redes neuronales con conexiones hacia

delante, entrenadas en tiempo real con el algoritmo de

retropropagacion del error o el algoritmo fuera de línea de

Levenberg-Marquardt con datos tomados de la simulación

usando el control PI. Los resultados gráficos de modelación

muestran un mejor comportamiento del control neuronal con

respecto al control PI realizando el mismo esquema de control

general.

Palabras clave: modelación y simulación, motor de inducción, control

de orientación del campo magnético, control vectorial directo, redes

neuronales, aprendizaje de Levenberg-Marquardt, retropropagación.

3. Introduction

The Neural Networks (NN) applications for identification and

control of electrical drives became very popular in last decade.

In [1], an adaptive neuro-fuzzy system is applied for a stepping

motor drive control. In [2], a multilayer perception-based-

neural-control is applied for a DC motor drive. In [3], a recurrent

neural network is applied for identification and adaptive control

of a DC motor drive mechanical system. In the last decade a

great boost is made in the area of induction motor drive control.

The induction machine, particularly the cage type, is most

commonly used in adjustable speed AC drive systems [4].

The control of AC machines is considerably more complex

than that of DC machines. The complexity arises because of

the variable-frequency power supply, AC signals processing,

and complex dynamics of the AC machine [4], [5]. In the vector

or Field-Oriented Control (FOC) methods, an AC machine is

controlled like a separately excited DC machine, where the

active (torque) and the reactive (field) current components

are orthogonal and mutually decoupled so they could be

controlled independently [4]-[8]. There exists two methods

for PWM current controlled inverter −direct and indirect

vector control [4]. This paper applied the direct control method,

where direct AC motor measurements are used for field

orientation and control. There are several papers of NN

application for AC motor drive direct vector control. In [9] a

feedforward NN is used for vector PW modulation, resulting

in a faster response. In [10] an ADALINE NN is used for

cancellation of the integration DC component during the flux

estimation. In [11] a fuzzy-neural uncertainty observer is
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integrated in a FOC system, using an estimation of the rotor

time constant. In [12] an Artificial NN is used for fast estimation

of the angle ρ used in a FOC system. In [13] a flux and torque

robust NN observer is implemented in a FOC system. In [14],

an ADALINE-based-filter and angular-velocity-observer are

used in a FOC system. The NN training is online using the

Total Least Squares (TLS) algorithm. In [15], the authors

proposed a NN velocity observer used in FOC high

performance system for an induction motor drive. In [16] a

Feedforward-NN (FFNN)-based estimator of the feedback

signals is used for induction motor drive FOC system.  The

paper [17] proposed two NN-based methods for FOC of

induction motors. The first one used a NN flux observer in a

direct FOC. The second one used a NN for flux and torque

decoupling in an indirect FOC. The results and particular

solutions obtained in the referenced papers shows that the

application of NN offers a fast and improved alternative of

the classical FOC schemes. The present paper proposed a

total neural solution of a direct FOC problem which assures

fast response and adaptation to a variable load. This is

achieved applying real-time learned P/PI neural controllers of

IM velocity, flux and torque.

4. Models of the Induction Machine

4.1. A Phase (a, b, c) Model

The Induction Motor (IM) equations [6], [7], for stator and

rotor voltages in vector-matrix form are given as:
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Are: voltage, current, and flux, stator and rotor, three

dimensional (a, b, c) vectors, with given up phase components;

r
s
 and r

r
 are stator and rotor winding resistance diagonal

matrices, with given up equal elements r
s
 and r

r
, respectively; I

3

is an identity matrix with dimension three, and p is a Laplacian

differential operator. The vector-matrix block-form

representation of the flux leakage is given by the equation:

(5)
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Where: the stator, rotor and mutual block-inductance (3x3)

matrices are described in [6], [7]. The relative leakage

inductance depends on the winding turn stator/rotor ratio n,

and on the angular rotor position θ
r
 respectively [6], [7]. Finally,

the voltage equations (1), (2) could be expressed with respect

to the stator in the (a, b, c) model form:

(6)

Where the relative rotor voltage, current, flux and resistance

values are:

          v´
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 = nv
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(7)
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4.2. A (q, d, 0) Model

The (a, b, c) model is very complicated for control, so it could

be simplified using a transformation to the (q, d, 0) form. The

AC motor equations for the stator and rotor voltages in vector-

matrix form are given as follows:
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Are: voltage, current, and flux, stator and rotor, three

dimensional (q, d, 0) vectors, with given up components; r
s

and r
r
 are stator and rotor resistance diagonal matrices, given

by (3); Ω, and ∆Ω are diagonal angular velocity matrices,

given by:

(11)

The vector-matrix block-form representation of the flux leakage

is given by the equation:
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(12)

Where: the stator, rotor and mutual block-inductance (3x3)

matrices are given in [6], [7]. The (q, d, 0) model could be

written in the stationary and synchronous frames taking the

angular velocity equal to: ω=0 and ω=ω
e
, where ω

e
,

corresponds to the angular velocity of the stator field. Now

we could write the scalar electromagnetic torque equation

which could be expressed in the following basic forms used:

(13)

(14)

Where: P is a number of poles.
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4.3. Field Orientation Conditions

The flux and torque equations decoupling needs to transform

the stator flux, current and voltage vectors from (a, b, c)

reference frame to (q−d,s) reference frame and than to stationary

and synchronous reference frame. The Fig. 1 illustrates the

current and voltage vector representations in stator and rotor

synchronous frames. The Fig. 1 shows also the magnetic field

orientation, where the rotor flux vector is equal to the d-

component of the flux vector, represented in a synchronous

reference frame (λ´
e

dr 
= λ

r
), which is aligned with the d-

component of the current in this frame. For more clarity, the

current and flux orientation in the synchronous reference

frame are shown on Fig. 2. So, the field orientation conditions

are the following, [7]:

        λ́  e
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Taking into account that the rotor windings are shortcut, (the

rotor voltage is zero) and the field orientation conditions,

given by (16), the first two components of the equation (9),

obtained the form:
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as it is:
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Taking into account the condition (16), the torque equation

(13) could be written in the form:

(19)

The equation (19) shows that if the flux of the rotor is

maintained constant, so the torque could be controlled by

Fig. 1. The current and voltage vector representations in
stator and in rotor synchronous reference frames.
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Fig. 2. The stator current and the rotor flux vector
representations in synchronous reference frame.
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the q-component of the stator current in synchronous

reference frame. From the second equation of (17) and (18) it

is easy to obtain the slipping angular velocity as:

          ω
e
 − ω

r 
= (r´

r
 L 

m 
/ L´

r
)(ie

qs
 / λ́  e

dr
)                             (20)

The final equation (20) gives us the necessary basis for a

direct decoupled field oriented (vector) control of the AC

motor drive, where following the Figure 2, the q-component

of the stator current produced torque and the d-component

of the stator current produced flux.

4.4. Coordinate Transformations

The combined stator current transformation from (a, b, c) to

(q−d,s,e) synchronous reference frame [6], [7], is given by the

equation:

(21)

(22)

4.5. Flux and Torque Estimation

From the equation (8), written for the stationary reference

frame (ω=0), we could obtain:

λs

qs
 = (1/p) (vs

qs
 −r

s
is

qs
)                                 

 (23)λs

ds
 = (1/p) (vs

ds
 −r

s
is

ds
)

The stator flux part of the equation (12) could be resolved for

the rotor currents, as it is:
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Substituting (24) back in the rotor flux part of (12) we could obtain:
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Where: L
s
, L

r
, L

m
 are stator, rotor and mutual inductances, and

the prime supper index signifies its relative values. Now it is

easy to compute the angle ρ needed for field orientation, the

rotor flux, and the sin, cos functions of this angle, needed for

flux control, torque estimation, and coordinate

transformations, as it is:

(27)

The torque equation (19) could be rewritten in the form:

(28)

5. Direct Vector Control of the IM
5.1. A General Control Scheme

A general block diagram of the direct vector control of the

Induction Motor drive is given on Figure 3.

The direct control scheme contains three principal blocks. They

are: G
1
, G

2
, G

3
 blocks of PI controllers; block of coordinate (abc) to

(q−d,s,e) transformation (see equation (21)); block of vector

estimation, performing the field orientation and the torque, flux

and angle computations (see equations (27, (28)); block of inverse

(q−d,s,e) to (a,b,c) transformation; block of the converter machine

system and induction motor. The block of the converter machine

system contains a current three phase hysteresis controller; a

three phase bridge ASCI DC-AC current fed inverter; an induction

motor model; a model of the whole mechanical system driven by

Fig. 3. General block-diagram of a direct IM vector control.
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the IM ((2/P)J(dω
r
/dt)= T

em 
− T

L
, where J is the moment of inertia,

T
L
 is the load torque). The block of vector estimation performed

rather complicated computations, so it contains various blocks,

illustrated by the next figures. The Figure 4 illustrates the flux and

angle estimation for field orientation, computing (23), (25), (26),

(27). The rotor flux computations block (see Figure 4) performs

computations given by (23), (25), (26), illustrated by the Figure 5.

The rotor flux, the angle, and the sin, cos functions computations,

given by equation (27) are illustrated by the Figure 6.

The Figure 7 illustrates the torque estimation computed by

equation (28). The next paragraph describes the feedforward

neural network realization of these computations.

5.2. A Feedforward Neural Network (FFNN) Realization of
the Direct Vector Control Scheme

The simplified block-diagram of the direct neural vector control

system, given on Figure 3 is realized by nine FFNNs. We will

describe in brief the function, the topology and the learning of

each FFNN. The main contribution here is the introduction of the

neural P/PI velocity, flux and torque controllers which are

capable to adapt the control system to load changes.

FFNN1: The first NN1 is an angular velocity neural PI

controller with two inputs (the velocity error, and the total

sum of velocity errors) and one output (the torque set point).

The weights learning is done in real-time using the

Backpropagation (BP) algorithm, [3]. The FFNN1 function is

given by the following equation:

      T*(k) = ϕ[g
p
(k)e

vel
  + g

i
(k)e

vel
(k)]                        (29)

Where: g
p
 and g

i
 are proportional and integral FFNN1 weights;

ϕ is a tanh activation function; e
vel

 is a velocity error; ; T* is

the torque set point −output of the FFNN1. The integration

sum of errors is:

Fig. 4. Block-diagram of the vector estimation computations.

Fig. 5. Block-diagram of the flux estimation computations.

Fig. 6. Illustration of the trigonometric functions computation
necessary for flux and angle estimations.

Fig. 7. Block-diagram of the torque estimation computations.

sum
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    e
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 (k) = Σ evel
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Where n is the total number of iterations. The BP algorithm

for this FFNN1 is given by:

               g
p
(k+1) = g

p
(k) + ηe

vel
(k)[1 − (T*(k))2]e

vel
(k)

(31)
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FFNN2: The second NN2 is a torque neural P controller with

one input and one output (the torque error and the stator q-

current set point). The function and the real-time BP learning,

[3], of this FFNN2 are given by:

                i
qs

e*(k) = φ[g
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T
(k)]                                              (32)
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Where: g
p
is a proportional weight; φ is a tanh activation

function; e
T
 is a torque error; η is a learning rate parameter;

i
qs

e* is a current set point −output of FFNN2.

FFNN3: The third NN3 is a flux neural PI controller with two

inputs and one output (the flux error and its sum, and the

stator d-current set point). The function and the real-time BP

learning, [3], of this NN3 are given by:

i
s
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Where: g
p
 and g

i
 are proportional and integral FFNN3 weights;

ϕ is a tanh activation function; e
flux

 is a flux error; η is a learning

rate parameter; i
ds

e* is a current set point −output of FFNN3.

The integration sum of errors is:

    
e

vel  
 (k) = Σ e

flux
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Where n is a total number of iterations;.

FFNN4: The fourth FFNN4 is a torque off-line trained neural

estimator (realizing (28) equation computation) which has two

inputs and one output (the rotor flux, the stator q-current,

and the estimated torque). The topology of this multilayer

FFNN4 is (2-10-1) and the off-line algorithm of its learning is the

Levenberg-Marquardt (LM) one [18], [19]. The FFNN4 is

learned by 2500 input-output patterns (half period) and

generalized by another 2 500 ones (the other half period) during

61 epochs. The final value of the MSE reached during the

learning is of 10−10.

FFNN5: The fifth NN5 performed a stator current (a,b,c) to

(q−d,s,e) transformation (using (21), (22) equations). The

FFNN5 topology has five inputs (three i
as

, i
bs

, i
cs
 stator

currents; sinρ, cosρ), two outputs (ie

qs
, ie

ds
 stator currents)

and two hidden layers of 30 and 20 neurons each (5-30-20-2).

The FFNN5 learning is off-line, applying the Levenberg-

Marquardt algorithm [18], [19]. The final value of the MSE

reached during the learning is of 10−10.

The FFNN5 is learned by 2500 input-output patterns and

generalized by 2500 ones during 29 epochs of learning.

FFNN6: The sixth NN6 performed an inverse stator current

(q−d,s,e) to (a,b,c) transformation (using the transpose of

the transformation matrix in (21), (22) equations). The NN6

topology has four inputs (two ie

qs
, ie

ds
 stator currents; sinρ,

cosρ), three outputs (i
as

, i
bs

, i
cs
 stator currents) and two

hidden layers of 30 and 10 neurons each (4-30-10-3). The

NN6 learning is off-line, applying the Levenberg-Marquardt

algorithm [18], [19]. The final value of the MSE reached

during the learning is of 10−10. The NN6 is learned by 2500

input-output patterns and generalized by 2500 ones during

32 epochs.

FFNN7: The seventh NN7 performed rotor flux estimation

using (27) equation. The rotor (q−d,r) flux components λs

qs
,

λs

ds
 are previously computed using eqn. (23) (see Fig.5), and

they are inputs of FFNN7. The other two inputs are the stator

currents: is

qs
, is

ds
. The FFNN7 output is the rotor flux:  λ´

r
. The

FFNN7 topology is (4-30-10-1). The FFNN7 learning is off-

line, applying the Levenberg-Marquardt algorithm [18], [19].

The final value of the MSE reached is of 10−10. The FFNN7 is

learned and generalized by 2500 input-output patterns in 35

epochs.

FFNN8, FFNN9: The FFNN8, and FFNN9 are similar to FFNN7

and performed separately the q and d rotor flux components

estimation using (25), (26) equations. The FFNN8, FFNN9

topologies are: (2-10-5-2).The FFNN8, FFNN9 learning is

off-line, applying the Levenberg-Marquardt algorithm [18],

[19]. The final value of the MSE reached during the learning

is of 10−10. The FFNN8, FFNN9 are learned and generalized

by 2500 input-output patterns during 47 and 49 epochs of

learning, respectively. The values of sinρ, cosρ, needed for

the coordinate transformations (see eqns. (27)) are obtained

dividing the outputs of NN8, NN9 by the output of NN7.

sum

k = 0

n

sum

sum

sum

sum

sum

k = 0

n
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6. Graphical Results of Control System Modelling

The parameters of the IM used in the control system modelling

are: power 20Hp; nominal velocity N=1800 Rev.pm; pole

number P = 4; voltage 220 volts; nominal current 75 A; phase

number 3; nominal frequency 60 Hz; stator resistance r
s
 =

0,1062 ohms; rotor resistance referenced to stator r
r
´= 0.0764

ohms; stator inductance L
s
 = 0.5689. 10-3 Henry; rotor

inductance referenced to stator L
r
´ = 0.5689. 10−3 Henry;

magnetizing inductance L
m
 = 15.4749. 10-3 Henry; moment of

inertia J = 2.8 kg.m2. The control system modeling is done

changing the load torque in different moment of time. The

Figure 8 and Figure 9 show the angular velocity set point vs.

the IM angular velocity control (PI and NN control) with load

torque changes. The results show that the angular velocity

neural control system has a fast speed up response and

satisfactory behaviour in the case of load change. This type

of control gives better results with respect to the PI control

(inferior overshoot in load changes). The Figure 10 shows

the flux graphics of control system with PI control vs. neural

control without and with load changes. The results show a

faster and better response of the neural system, which try to

maintain the flux constant in the case of load changes. The

Figure 11 and Figure 12 show the graphical results of IM

torque control for system with PI and neural control without

and with load changes. The comparison of the Fig.11 a,b

shows that the neural control has smaller overshoots than

the PI control. The same could be observed in the Fig.11 c for

the IM system start. In the Fig.12 the results also show a

faster and better response (smaller overshoots in load

changes) of the neural system in both of the cases. The Figure
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Fig. 8. Graphics of trajectory tracking angular velocity
control (set point, PI-control, neural control).

Fig. 9. Graphical results of angular velocity control with
load changes (set point, PI-control, neural control).

Fig. 10. Graphics of flux PI control vs. neural control. a) IM
Start; b) Control with Load Changes.

a)

b)
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13 shows the (a,b,c) stator current set-points and the (a,b,c)

stator currents of current hysteresis controlled system start.

The Figure 14 shows the same variables in the case of load

changes. The results show a good performance of the neural

control system at all, capable to augment and to decrease the

currents in respective load changes.

7. Conclusions

The paper proposed a complete neural solution to the direct

vector control of three phase induction motor including real-

time trained neural controllers for velocity, flux and torque, which

permitted the speed up reaction to the variable load. The basic

equations and elements of the direct field oriented control scheme
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are given. The control scheme is realized by nine feedforward

neural networks learned by Levenberg-Marquardt or BP

algorithms with data taken by PI-control simulations. The NN PI

or P adaptive neural controllers are learned on line using the BP

algorithm. The complementary blocks which realized coordinate

and computational operations are learned off-line using the LM

algorithm with a 10-10 set up error precision. The graphical results

of modelling shows a better performance of the adaptive NN

control system with respect to the PI controlled system realizing

the same computational control scheme with variable load.
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Fig. 11. Graphics of torque (PI control) and torque (neural control).
a) Process history of the torque PI control; b) Process history of the

torque neural control; c) IM start (PI control vs. neural control).

a), b)

c)

Fig. 12. Graphics of torque (PI control and neural control with load
changes). a) PI control (0.7 -1.1 sec.); b) Neural control (0.7 -1.1

sec.); c) PI control (1.2 -1.1.6 sec.); d) Neural control (1.2 -1.6 sec.).

a), b)

c),d)
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Fig. 13. Graphical results of (a,b,c) stator currents during the start of the IM. a) Current set points (left); b) Currents (right).

Fig. 14. Graphical results of (a,b,c) stator currents during load changes for different periods of time (0.7-1.2) sec., (1.2-
1.7) sec. and different loads. a). c) Current set points (left); b) d) Currents (right).
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