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1. Abstract

In this work, the solution of the non uniform line with frequency
dependence via a simplified method of characteristics is
described. Using this method, a line with symmetric non
uniformity with respect to its center can be solved identically
to a uniform line, obtaining for that purpose transient parameters
of series resistance and transversal conductance, which define
frequency and space dependence of the line. Besides, space
discretization required by the conventional method of
characteristics is replaced by a simple division of the line in
two equal segments. Accuracy of the method is validated with
3 application examples, comparing the results from those
obtained by the conventional method of characteristics, the
Numerical Laplace Transform and an experimental
measurement published elsewhere.

Key words: frequency dependent parameters, method of
characteristics, non uniform line.

2.  Resumen (Método de características simplificado para
la solución transitoria rápida de líneas de transmisión
dependientes de la frecuencia y el espacio)

En este trabajo se describe la solución de la línea no uniforme
con dependencia frecuencial por medio de un método de
características simplificado. Mediante este método, es posible
resolver una línea con no uniformidad simétrica respecto a
su centro de manera idéntica a una línea uniforme, obteniendo
para ello los parámetros transitorios de resistencia serie y
conductancia transversal que definen la dependencia tanto
frecuencial como espacial de la línea. Además, la
discretización en la distancia utilizada por el método de
características convencional se sustituye por una simple
división de la línea en dos segmentos iguales. La precisión
del método se valida mediante tres ejemplos de aplicación,
comparando los resultados con los obtenidos por el método
de características convencional, el algoritmo de la transformada
numérica de Laplace y una medición experimental publicada
previamente.

Palabras clave: parámetros dependientes de la frecuencia,
método de características, línea no uniforme.

3. Introduction

Transmission line modeling for electromagnetic transient
studies is usually performed neglecting variations of the line
electrical parameters with distance, this is, the line is assumed
with constant cross-section and constant electrical properties
of conductors and dielectric. However, for fast transient studies,
such as those due to lightning or substation grounding, the
correct description of these non uniformities can be as
important as the inclusion of frequency dependence of the
line parameters (mainly due to skin effect in conductors and
ground return), yielding significant differences of the resulting
wave shapes.

The Non Uniform Line (NUL) problem has been analyzed in the
last decades using frequency domain as well as time domain
techniques [1-10]. The advantage of frequency domain
techniques is that the line frequency dependence can be taken
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into account in a straightforward manner; nevertheless, dealing
with changes in the network topology can be complicated [11].
Conversely, time domain methods, such as EMTP-type programs
or finite difference algorithms, require several approximations
in order to take into account the frequency dependence of the
line. It has been reported that even the most advanced line models
available in commercial programs can be prone to errors [11].

Modeling of NULs using EMTP-type programs is not an easy
task. A division of the line in uniform line segments is required,
considering the parameters variation between them. This yields
a large and highly dispersive admittance matrix; therefore, both
the modeling and simulation procedures are in general
cumbersome and time-consuming, and a great deal of experience
is needed in order to define the optimal number of line sections.

In the other hand, from the existing methods based on finite
difference algorithms, the method of characteristics is usually
preferred given its proven efficiency to solve hyperbolic type
problems, such as the well known Telegrapher equations that
describe wave propagation along transmission lines. This
method has been successfully applied for the solution of
transmission lines with corona and frequency dependence
[12-13], non uniformities [4-5, 14], as well as transmission
tower modeling [10] and field excited lines [15].

An important problem related to the NUL solution with the
method of characteristics is that the discretization grid, also
known as characteristics grid, becomes irregular, taking into
account that the characteristics that define this grid, being
functions of x, become curves. This problem has been solved
in previous works establishing a regular grid of points in the
x-t plane and then forcing the characteristics to cross these
points [4-5, 14]. However, determination of these points
involves an iterative procedure prior to the simulation.

In this work, to major simplifications to the method of
characteristics for the solution of symmetrical NULs with
frequency dependence are proposed:

1. Elimination of the interpolation procedure by means of
synthesizing a uniform line model equivalent to the NUL
model.

2. Elimination of the line discretization, defining a new grid
for which only a division in two segments is required.

4. Development
4.1 Conventional method of characteristics

In the following sections, conventional solutions for
frequency dependent line (uniform and non-uniform) are
described.

4.1.1. Frequency dependent uniform line

The modified Telegrapher equations for a frequency dependent
uniform line were defined by Radulet et al. [16] as follows

                               (1a)

 (1b)

where v(x,t) and i(x,t) are the voltages and currents along the
line; L

G
 and C

G
 are the geometric values of inductance and

capacitance, while r’(t) and g’(t) represent transient values of
resistance and conductance of the line. In frequency domain,
(1a) and (1b) are given by

(2a)

(2b)

being Z(s) and Y(s) the series impedance and shunt
conductance of the line, per unit length. Transient parameters
R’(s) and G’(s) can be rationally fitted as

(3a)

(3b)

Pairs {k
i
, p

i
} and {m

i
, q

i
} represent the i-th poles and residues

of the respective partial fraction expansion. If the Leibnitz
rule [4] is applied, (1a) and (1b) can be rewritten as follows

(4a)

(4b)
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where:
         L

cor
 = k  + L

G
,      C

cor
 = m  + C

G 
              (5a),(5b)

(6a),(6b)

Expressions Ψ and φ represent convolution terms, which are
computed from the rational approximations of R’(s) and G’(s)
using a recursive algorithm [17], as described in the
Appendix. Rewriting (4a) and (4b) in compact form:

(7)

where

(8a),(8b)

(8c),(8d)

Eigenvalues (λ
1,2

) and eigenvectors (M
L
 and M

R
) of A are

given by

(9)

(10a),(10b)

where
(11a),(11b)

Left multiplying (4a,b) times M
L
, regrouping and applying

(9) and (11) yields

(12a),(12b)

Describing a new coordinate system along the lines defined
by λ=±dt/dx, called characteristics, the following
equivalence can be applied:

Fig. 1. Characteristics grid - Internal points.

(13)

Using (13) in (12a,b) and expressing the derivatives in discrete
form:

(14a)

(14b)

Applying finite differences to (14a,b) according to Fig. 1,
values at point F (corresponding to internal points at time t)
are computed using known values at points D and E
(corresponding to previous time step t−∆t):

(15a),(15b)
where

                                        ,                                              (16a),(16b)

                                        ,                                             (16c),(16d)
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Voltage at point F is obtained adding (15a) and (15b):

(17)

while the corresponding current is obtained subtracting the
same equations:

(18)

Solution for boundary points is computed according to Fig.
2. For the sending point S (x=0), the application of an ideal
voltage source v

S
 = f(t) is considered. Applying (15b),

replacing subscript F by S and solving for i
S
:

(19)

For the load boundary point L (x = L), the connection of a
resistive load R

L
 such that i

L
 = v

L
/R

L
, is considered. Eq.

(15a) is applied, replacing subscript F by L and solving
for v

L
:

(20)

In order to assure convergence of the solution, discretization
of x and t must comply with Courant-Friedrichs-Lewy
condition (CFL) [18]:  ∆x/∆t < υ, being υ the propagation
velocity of the line.

4.1.2 Frequency dependent non uniform line

Electrical parameters of a non uniform line (NUL) are not
only frequency but also distance varying. Therefore, values
of λ

1
 and λ

2
 are functions of x, causing characteristics to be

curved and generating an irregular grid, as shown in Fig. 3.
This has been previously overcome by establishing a new
grid of regular points and forcing characteristics to cross these

points [14]. However, to determine location of crossings an
iterative interpolation procedure is required before starting
the transient simulation. This, according to the line non
uniformity, can be computationally expensive.

4.2 Simplified method of characteristics

For a line with symmetrical non uniformity with respect to its
center (hereafter defined as symmetrical NUL, e.g., sagging
between towers), interpolation process can be avoided
synthesizing a uniform line model from the chain matrix of a
NUL. Moreover, for this type of line it is possible to eliminate
the discretization in x by dividing the line only in two
segments. By avoiding interpolation and discretization
processes, line solution becomes faster and simpler.

Fig. 3. Irregular grid for non uniform lines.

Fig. 2. Characteristics grid-Boundary points.
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4.2.1 Elimination of interpolation process

According to [2-3, 19], a non uniform line can be
approximated by cascaded connection of chain matrices of
uniform line segments, considering the variation of the line
electrical parameters between each subdivision. Thus, the
NUL can be defined in the frequency domain as

(21)

where V(0,s) and V(L,s) are the voltages at the line ends (x=0
and x=L, being L the line length); I(0,s) and I(L,s) represent
currents at the same points; ΦΦΦΦΦ(i) is the chain matrix of the i-th
line segment, while Φ

11
, Φ

12
, Φ

21
 and Φ

22
 are the elements of

the chain matrix of the complete NUL, defined by

(22)

being γ
nu

 the propagation constant and Y
0,nu

 the characteristic
admittance of the complete NUL. These values can be
computed from (22):

(23a)

(23b)

Previous variables can also be defined from the series
impedance and shunt admittance of the NUL, Z

nu
 and Y

nu
:

(24a)

(24b)

Solving (24a,b) for Z
nu

 and Y
nu

 and applying (23a,b):

(25a)

(25b)

According to (25a,b), a uniform line model can be completely
defined from the chain matrix of a NUL. This model can be
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described similarly to (2a,b) replacing Z and Y by Z
nu

 and Y
nu

.
In the other hand, transient parameters of the NUL are
computed as

(26a)

(26b)

were L
G
 and C

G
 are obtained for a mean value of the line non

uniformity. Starting from the rational approximation of R'(s)
and G'(s) of (26a,b), solution via the method of characteristics
is identical from that of a uniform line, i.e., the characteristics
are straight and produce a regular grid, so that the
interpolation described in section 4.1.2 is not required.

4.2.2 Elimination of discretization process

In order to avoid the discretization in x required by the
conventional method of characteristics, the grid shown in
Fig. 4 is used, wherein the line is divided in two equal
segments, solving only for 3 points at each time step: the
boundaries and one internal point. Solution for these points
at time t is computed from values known at t−τ /2, being τ
the travel time of the line, so the Courant-Friedrichs-Lewy
condition is still satisfied. For the boundary points this yields

(27a)
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Fig. 4. Simplified characteristics grid.
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(27b)

and for the internal point

(28a)

(28b)

Equations (27a,b) and (28a,b) are solved at each time step ∆t
similarly to the conventional method of characteristics.

4.3 Validation of the proposed method

Accuracy of the proposed method is validated by means of 3
application examples:

" Sagging between 2 towers
" Simulation of a field experiment
" Step response of a machine winding

Results are compared with those obtained by the
conventional method of characteristics, the Numerical
Laplace Transform and an experimental measurement.

4.3.1 Sagging between 2 towers

A single line 600m long with a sagging between towers is
analyzed. The line maximum and minimum heights are 28m
at the towers and 8m at the middle span. A unit step voltage
source is connected to the sending node, while the receiving
node is left open. Frequency dependence of the line
parameters is accounted for. Fig. 5 shows the voltage at the
receiving end of the line, comparing the results obtained
with the Numerical Laplace Transform (NLT) [14, 20-21] and
the simplified method of characteristics (SMC). Results when
the line presents no sagging (UL) are also included.

In Fig. 6, a comparison between simplified and conventional
methods of characteristics (SMC and MC, respectively) is

Científica

164

Fig. 5. Voltage at the receiving end of the non uniform line.
Simplified method of characteristics (SMC) vs. Numerical

Laplace Transform (NLT).

provided. Results are virtually identical, but the simulation
with the simplified method of characteristics was several times
faster than the conventional one; between 5 and 6 times faster
using MATLAB® 7.

4.3.2 Simulation of a field experiment

As a second example, the proposed method is applied to the
simulation of a field experiment performed by Wagner, et al.
[22]. The experiment consists on injecting a step like wave at

Fig. 6. Voltage at the receiving end of the non uniform line.
Conventional method of characteristics (MC) vs. simplified

method of characteristics (SMC).
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one end of a 2185.4m long line divided in 7 equal segments,
as shown in Fig. 7. The line maximum and minimum heights
are 26.2m at the towers and 15.24m at the middle span. The 3
line conductors are ACSR with radius of 2.54cm. The injected
wave is applied simultaneously to the 3 conductors at the
sending node, while the receiving node is left open.

For the simulation, the line is represented by a single-phase
equivalent. The voltage at the receiving end of the line is
shown in Fig. 8, comparing the experimental results and those
obtained with the simplified method of characteristics.
Waveforms were plotted as half of their actual magnitude, as
done in [22], to remove the doubling due to the open circuit.

4.3.3 Step response of a machine winding (single coil)

As a last example, the step response of a machine winding is
analyzed using a non uniform line model. Electrical
parameters of the winding coil are computed for 2 different
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regions, namely the slot and the overhang, according to [23]
and the data listed in Table 1. The coil is divided in 5
segments, as shown in Fig. 9. The complete coil model is
obtained by means of the cascaded connection of 5 different
chain matrices. A unit step voltage source is connected to
node A, while node B is left open.

In Fig. 10, the voltage waveform at node B is shown,
comparing the results from the simplified method of
characteristics from those obtained with the Numerical
Laplace Transform algorithm.

5. Conclusions

In this work, two major improvements to the method of
characteristics have been presented, resulting in the simplified
method of characteristics (SMC) for the solution of symmetrical

Fig. 7. Simplified characteristics grid.

Fig. 8. Simplified characteristics grid.

Fig. 9. Winding representation using line segments.

Fig. 10. Voltage at node B of the winding.
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non uniform lines with frequency dependence. This method
does not require the interpolation process previously needed
to obtain a regular grid of characteristics for the non uniform
line. Instead, a uniform line equivalent to the non uniform line
is obtained, for which the conventional solution stands.
Besides, a new solution procedure has been defined, for which
the spatial discretization is not necessary, turning the algorithm
faster and simpler. Accuracy of the proposed method has been
tested by means of 3 application examples, providing
comparisons with a frequency domain method (NLT) and an
experimental result.
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Appendix: Recursive convolution algorithm

Convolution term  from (4a) is defined in time domain as

(29)

Due to the non-smooth nature of R'(s), complex conjugate
pairs of poles and residues are used in the rational
approximation of the Laplace domain spectrum of   [24]:

(30)

where  N
1
 is the order of the approximation and

(31)

Coefficients a
i
, b

i, 
c

i, 
and d

i
 are always real. Eq. (31) can be

written in time domain as

(32)

Applying the central differences rule to (32) and in accordance
to (30), the total convolution can be written as follows:

(33)

A similar procedure can be applied to the convolution term φ
related to (4b), yielding:

(34)

where coefficients e
i
, f

i, 
g

i, 
and  h

i
 are all real and computed

from the rational fitting of φ  in the Laplace domain.
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