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1. Abstract

This paper uses different/state-of-the-art finite-element
techniques to effectively obtain the standstill frequency
response of synchronous machines. It addresses the
continuous interest to avoid actual tests in large machines
as they represent high costs and risks of damage. This work
uses Lagrange multipliers to create two different finite-
element meshes that are joined at the air gap region, allowing
the existence of element nodes in other element edges and
facilitates the simulation of the rotor body movement. This
is not usually possible in conventional finite-element codes,
where the convenient use of dissimilar mesh densities for
the stator and rotor components of the machine is not
allowed. The finite-element model developed in this work
also takes explicit consideration of the external circuitry
connected to the machine through a simultaneous and
effective solving of the field and circuit equations. The
simulations follow the procedure of the corresponding IEEE
standard. The numerical results agree well with an older and
much less efficient finite-element approach, but that has been
fully validated.

Key words: Synchronous Machines; Finite Element Method;
Standstill Frequency Response Test.

2. Resumen (El uso de elementos finitos en el cálculo de la
respuesta a la frecuencia de máquinas síncronas)

Este artículo usa técnicas modernas de elementos finitos
para obtener eficientemente la respuesta a la frecuencia de
máquinas síncronas en reposo. Responde al continuo inte-
rés que existe por evitar pruebas experimentales en máqui-
nas de alta potencia, debido a que implican altos costos y
riesgo de daños. En este trabajo se utilizan multiplicadores
de Lagrange para crear mallas diferentes, que se unen en el
entrehierro de la máquina, y permiten la existencia de nodos
sobre lados de otros elementos y facilitan la simulación del
giro libre del rotor. Esto no es realizable con códigos con-
vencionales de elementos finitos, donde la unión de mallas
de diferentes densidades para el rotor y el estator no es una
opción. El modelo de elementos finitos desarrollado en este
trabajo también toma en consideración la circuitería externa
conectada a la máquina a través de una solución simultánea
de las ecuaciones de los circuitos y del dominio electromag-
nético. Las simulaciones siguen fielmente los procedimien-
tos de la norma IEEE. Los resultados concuerdan muy bien
con una aproximación de elementos finitos  obtenida ante-
riormente, menos eficiente, pero que sirve como marco de
comparación, ya que fue completamente validada.

Palabras clave: máquinas síncronas; método del elemento fi-
nito; prueba de respuesta a la frecuencia.

3. Introduction

Synchronous machines [1] represent the main way to produ-
ce substantial amounts of electrical energy. This energy is
mostly generated in thermoelectric and hydroelectric plants,
where turbines are respectively driven by high pressure steam
and falling water in order to convert mechanical into electric
energy. The working principles of thermoelectric and
hydroelectric generators are the same, but their construction
differs somehow due to the markedly distinct speeds found in
each type of plant [2]. The synchronous machine has been a
subject of research for more than a century, because its
electromechanic design can be optimized and due to the
growing need of interconnecting more power networks
together [3]. The seminal work of Blondel [2] and Park [4]
established the basis of the Two-Axis Theory [5], which is
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routinely used nowadays by power system analysts. This way,
it is possible to obtain high-order equivalent circuits [6-8] that
can be used with circuit simulators to properly design and
operate modern power systems. Roughly speaking, a
synchronous machine is constituted of copper conductors
and ferromagnetic materials arranged in such a way as to
enhance magnetic fields interaction, that produce winding
voltages and an electromagnetic torque to achieve energy
conversion. The nonlinearity of the stator and rotor cores
along with the distributed currents induced in the rotor body
under transient conditions pose a problem that is difficult to
tackle with simple/traditional equivalent circuits since the rotor
electromagnetic dynamics cannot be properly modelled [9].
Also, the mechanical system connected to the machine must
be appropriately taken into consideration, making the problem
a coupled one, where the mechanical and electromagnetic
systems must be solved simultaneously. There is an accepted
equivalent circuit structure [6] that has been generalized using
n damper branches, such that the rotor electromagnetic effects
can be reasonably represented. The main problem associated
with equivalent circuits is that the identification of the circuit
parameters is a task that requires testing of the machine so
that the measured data can be used with identification
techniques [8, 10, 11]. One of the tests that is predominantly
accepted for parameter identification is the Standstill
Frequency Response (SSFR) test [12] since it can provide
parameters for both axes of the machine. Moreover, the test is
performed with low excitation levels as to prevent machine
damage. Nevertheless, it is a costly test as it requires that the
machine be disconnected of the power network, that is, it
must be out of service during the test. In addition, saturation
and contact resistances of rotor circuits are not properly taken
into consideration and semi-empirical corrections to the circuit
parameters must be used to account for this phenomenon [3].
In spite of all these disadvantages is commonly and popularly
used to define parameters because it results in equivalent
circuits that produce acceptable results when used in power
system simulations.

This work shows how state-of-the-art finite-element techniques
can be used to model the SSFR test, avoiding in this way the
need of actual experimentation avoiding high costs and the
possibility of affecting energy supply to consumers. The finite
element method [13] is a powerful tool that can be used to
directly model the electromagnetic behaviour of electrical
machines using partial differential equations that are derived
from Maxwell’s equations [14]. Synchronous machines have
peculiarities that cannot be directly handled with standard finite-
element approaches. For instance, the allocation of windings
and rotor motion can pose a special definition of current
distribution that is not usually handled by standard codes.
Moreover, the conventional finite-element approach requires

definition of currents but electrical machines are fed with voltage
sources and circuitry, resulting in the need of developing non-
conventional methods. This work combines special techniques
to obtain an efficient finite-element model. It also shows the
use of the theory and the implementation of methods that
address the interconnection of external circuitry with the field
model, as well as the problem of rotor movement. A «strong»
mathematical coupling of the field and circuit equations is
performed, whereas rotor motion is taken into consideration
using Lagrange multipliers.

4. The Electromagnetic Equations

Formal derivation of the partial differential equation that must
be solved to obtain the SSFR of a synchronous machine is
given in the following paragraphs. The electromagnetic
behavior of the synchronous machine is completely described
by Maxwell’s equations [14]:

 
t

t

∂∇× = −
∂

∂∇× = +
∂

B
E

D
H J

                                                     (1)

where E and H are the electric and magnetic fields. D and B are
the electric and magnetic flux densities. J is the free current
density and ρ is the free charge density. These equations are
complemented with the following constitutive relations to take
into account material properties of the medium being analysed:

 ε
µ
σ

=
=
=

D E

B H

J E
                                                (2)

where ε and µ are the permitivity and permeability, respectively,
and σ is the conductivity. It is often convenient to find some
simplifications in order to solve these two sets of equations
when low-frequency electric-power devices are analyzed. One
important simplification is established when the displacement
current (∂D/∂t) in (1c) can be neglected under low frequency
operation [14]. It is assumed here that the power transfer from
stator to rotor in rotating electrical machines takes place
instantaneously. Accordingly, J, in equation (1c), represents
the current densities impressed from external sources and the
internally generated eddy current densities. Another significant
simplification is achieved when a two-dimensional
approximation of the electromagnetic device is possible. It is a
good approximation to consider that the magnetic field
distribution of synchronous machines is nearly planar. This
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simplification implies that the vector current densities are
axially directed, that is, they only posses one component,
resulting into a two-dimensional approach. Hence, the
electromagnetic equations can be recast in a more manageable
form by using the magnetic vector potential [13, 14]. The
magnetic flux density vector can be expressed as the rotational
of a potential vector field because of its divergenceless nature
(see equation (1d)):

 = ∇ ×B A                                                    (3)

where A is the magnetic vector potential, which is also axially
directed in planar representations. In order to specify
completely this vector field, its divergence must also be defined
[14]. The divergence of A in two dimensions is automatically
enforced to zero (Coulomb gauge [15]):

 z
= = 0

A

z

∂∇ ⋅
∂

A                                           (4)

since the magnetic vector potential has only one component
in the axial direction and it is constant along it. Equations (3)
and (1a) can be combined to show that the electric field E is
given by:

 
V

t

∂= −∇ −
∂
A

E                                           (5)

where V is the electric scalar potential. It is now clearly seen
that equation (5) can be written as a scalar relationship because
the electric field has only one component:

 z
z

V A
E

z t

∂ ∂= − −
∂ ∂                                            (6)

Thus, equations (1c), (2b) and (3) can be combined to give:

 1
( )
µ

∇ × ∇ × =A J                                         (7)

which can then be rewritten for the two dimensional case as
(using (6)):

 1
( ) zA

µ
∇ ⋅ ∇ =                           = J

z 
= − σE

z
                 (8)

An important property of the electric scalar potential in (6) is
obtained by taking the divergence of the axial current density

in (8). It can be easily verified that the value of this divergence
is zero, since the divergence of the rotational of a vector field
is always zero. As a result, the following expression is obtained
from the middle term of (8):

 zA

z t z
σ σ∂ ∂ ∂+

∂ ∂ ∂                                               (9)

The first term on the left hand side of (9) is also zero due to (4).
Hence the second term of this equation shows that the first
partial derivative of V must be a constant and, therefore, V
varies linearly in the axial direction. Thus, it can be stated that
∂V/∂z is simply the potential difference (V

1
−V

2
) measured at

the ends of a conducting region divided by the effective con-
ductor length (L

eff
):

 1 2

eff

V VV

z L

−∂ = =
∂                                           (10)

It is this potential difference that allows the coupling of
the field equations with external electric circuits, as well
as, the interconnection between different internal regions
of the electromagnetic model.

Equation (8), subject to boundary conditions, represents the
solution of the general two-dimensional electromagnetic
transient problem. If the electromagnetic system is excited
with sinusoidal sources and the material properties (µ and σ)
have linear characteristics, then (8) can be written in the
frequency domain by simple substitution of ∂/∂t by jω :

      
 1
( ) zA

µ
∇ ⋅ ∇ =%  − J

zs
 + jωσAz                               (11)

where

 
zs

V
J

z
σ ∂= − =

∂

%
%

                                                         (12)

can be thought of as the current density impressed by external
sources to the field and stator windings of the machine. The
symbol ~ defines a complex quantity. The second term on the
right hand side of (11) represents the eddy currents induced
in the rotor body and windings of massive conductors [16].
Integration of the right hand side of (11) over coil regions
gives the total current externally fed to the machine windings.
If there are no eddy currents induced in the machine windings
(filamentary coils [17]), it is possible to write (11) as:

 1
( ) zA

µ
∇ ⋅ ∇ %

 = −                                                (13)
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This equation results from (11) by making the second term on
the right hand side of (12) equal to zero and by assuming that
the current density J

zs
 over the coil winding is uniformly

distributed over its cross section. A
coil

 is the area occupied by
the winding. In any case, the integration of the right hand side
of (11) or (13) gives the total winding current I

tot
.

5. Finite-Element Approach

The Finite Element Method is a powerful tool to solve partial
differential equations such as (11). In this work, a two-dimen-
sional finite element model with triangular and quadrilateral
elements was constructed to solve (11) and obtain the SSFR
response of a turbine generator. It is assumed that the
permeability pattern of the machine is known and fixed, so
that the problem is linear. The magnetic vector potential is
approximated in each finite element by:

 
1

( , )
eh

z
i

A x y
=

=∑%  N
i
A

i
                                   (14)

where A
i
 represents the magnetic vector potential at the h

e

element nodes and N
i
 are shape functions [13]. A hierarchical

scheme is used here, where the second order approximation is
obtained by adding on new second order terms and degrees
of freedom to the first order polynomial expansion [18]. This
approximation is similar to adding terms to a Fourier series in
order to improve it. The set of complex finite-element linear
equations, that represent the original problem (11), can be
obtained through the Method of Weighted Residuals [13-15],
where the error (ε), produced by assuming a linear variation in
each element of the problem domain, is forced to zero in an
average sense within the solution domain (Ω):
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where N
i
 is used again here as a weighting function, leading

to the well known Galerkin approach [13]. For a first order
triangular element, equation (15) can be written at node i as:
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∑ ∫
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                                                                     (16)

It has been assumed that the permeability µ and the current
density J

zs
 are uniform over each element. The general system

of equations is formed by merging each element contribution
to a particular node, leading to a global system of complex
equations:

[K]{A} + jω[C]{A} + [Q]{∆V} = {0}                     (17)

where [K] is a matrix that embodies the first and second terms

on the right hand side of (16). [ ]C  and [Q] are matrices that

result from the second and third terms on the right hand side
of (16). {∆V} is a vector of potential differences at winding
terminals. An additional equation for each winding can be
generated by integration of the right hand side of (11):

           zj Aωσ σ+%
                                                  (18)

which can be written in finite-element terms (using a unit weight
for the Galerkin formulation [13]), giving a system of equations
when all the windings are taken into consideration:

   jω[Q]T{A} + [S]{∆V} + {I
tot

}= {0}                        (19)

where [S] is a matrix that describes the position of the winding
terminals. Equations (17) and (19) can be combined, giving
the following system of equations:

 
{ }

[ ] 0 0
{ }

0 0 0
{ }tot

A
K

V

I

 
   ∆  
   

 

%

%

                                                                     
 (20)

This system of equations must now be completed with the
external circuit equations.

6. Coupling with External Circuitry

Rotating electrical machines are fed through voltage sources
such that winding currents are not known before a finite-
element solution can be obtained. Hence, the third term of
(17) is also unknown and therefore the circuit equations of
the external devices connected to the machine must be
established and solved along with the finite-element system
(17) and (19). There are two basic approaches to achieve this
goal: 1) a «weak» solution of the two sets of equations and
2) a «strong» coupling of the two sets. The weak approach
solves the field equations independently of the circuit ones,
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but the solution of the field equations is used as input data
of the circuit equations. Then, the solution of the circuit
equations is used as input data of the field system. This
process is iterative and performed in the time domain [19].
On the other hand, a strong coupling involves the
simultaneous solution of the coupled circuit-field problem.
This approach implicates an augmented matrix of the resultant
system and proper combination of the field and circuit
equations. There are several ways to achieve a strong
coupling and several examples can be found in the literature
[20, 21]. Nevertheless, an efficient way of achieving this goal
is given here based on [22]. Consider a RLC parallel circuit
between nodes 1 and 2, it is not difficult to show through
Kirchhoff’s nodal equations that:

  (21)

where V
1
 and V

2
 are the potentials at the terminals of the RLC

circuit arrangement. I
1
 and I

2
 are the net currents entering nodes

1 and 2, respectively. These two currents may be supplied by
an external source to the RLC arrangement. I

cap
 is the capacitor

current and V
0
 is the capacitor initial voltage. Now suppose

that these elements are to be connected between terminals 1
and 2 of a finite-element winding. Then, the system of equations
(20) is complemented in the following form:

(22)

Here, it has been assumed that only one winding exists inside
the electromagnetic device. A solution of this problem is
obtained when the initial voltage of the capacitor is specified.
Additional circuits are added in the same fashion.

7. Coupling Meshes of Different Densities

Motion is intrinsic to most electromagnetic devices. Motors
and generators have a stationary part, called stator, and a
rotating structure called rotor. The stator and rotor are separated
by an air gap. The rotor speed can be constant or variable.
Hence, it is necessary to take into consideration the rotor motion
within the finite-element model. A static mesh would be
destroyed by the movement of the rotor and methods to avoid
this must be devised. One possible method would be to have
two finite element meshes, one for the stator and another for
the rotor, joined by a slip boundary at the air gap [23]. This
boundary is divided into equal intervals such that rotation can
be simulated if nodes in the rotor side always coincide
peripherally with nodes on the stator side. This means that
rotor nodes belonging to the slip boundary are not allowed to
fall between sides of elements in the stator side. Thus, with this
technique the topology of the stator and rotor meshes is
unchanged, but the time step must be adjusted if speed is
allowed to vary arbitrarily. Another approach can be formulated
using finite elements in all the machine materials but the air gap,
where an analytical solution to Laplace’s equation can be found
and combined with the finite element part that models the rest
of the machine [24]. This permits a smooth motion of the rotor,
but this method results in a very non-conventional finite-element
approach due to the coupling of the analytical solution with the
finite-element discretization.

A method analogous with the «slip boundary» approach is
devised by defining a band of elements in the machine air gap.
The element band topology is changed as the rotor changes
its position. This method is known as the «moving band»
technique [25]. Thus, the rotor and stator meshes remain
unaltered but the elements in the air gap are distorted until a
re-meshing of the band becomes unavoidable.

The slip boundary method can be elegantly modified to enable
boundary nodes on the rotor mesh to fall between sides of
elements on the stator mesh, this happening at the sliding inter-
face. The magnetic vector potential of both meshes is then
coupled using Lagrange multipliers [26]. This technique offers
the advantage of avoiding re-meshing. Moreover, the stator
mesh can have a very different element density to the density
of the rotor mesh. This approach is used here and can be set in
the following way. The solution of the field equation (11) can be
obtained through the minimization of the co-energy of the
electromagnetic domain, that is, the function that minimises the
co-energy functional has the additional property of satisfying
(11) [15]. This way of solving partial differential equations is
mathematically justified with the calculus of variations [15]. The
co-energy functional of a domain can be divided into zones and
added together to obtain the total co-energy of the system. For
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the rotating machine two sub-domains have been defined: the
rotor and stator regions. Both regions are bounded by a band
of air and joined together at a circular interface Γ within the air
gap (see figure 1). Hence the total co-energy can be written as:

              W´(A) = W
r
´(A) + W

s
´(A)                             (23)

where W
r
´(A) is the co-energy of the rotor domain whereas

W
s
´(A) is the co-energy of the stator region. Minimization of

this co-energy functional leads to the sough solution.
However, this simple approach is not complete since the
system is constrained to make the magnetic vector potential
continuous at the circular interface:

    A
s
 − A

r
 = 0       on  Γ                                (24)

where A
s
 and A

r
 are the potentials that must be matched at the

interface. A minimization constrained problem can be tackled
and solved using Lagrange multipliers [27], which lead to an
equivalent minimization problem that can be stated as:

              ( , ) '( )rF A W Aλ =% %                                                         (25)

The two first terms on the right hand side of (25) are tackled
with standard finite-element techniques that result in a matrix
system represented by (17). If there are external devices, they
are incorporated using the approach presented in the previous
section. The line integral of (25) is performed over the whole
circular interface and λ is a Lagrange multiplier function that
can be put in finite element terms by assuming that

 Li i
i

Nλ λ= ∑                                             (26)

Thus, the Lagrange function has also been discretized using
shape functions N

Li
. This shape functions can be defined

using the already available discretization of the rotor or stator
domain. In other words, the element edges and nodes of the
chosen domain that face the circular interface are used to
define the Lagrange shape functions. In any case, the inte-
gral is finally written in finite element terms as:

        
 

( )s rA A dλ − Γ∫ % %  =    Σ N
I,i

 λ
i 
 (ΣN

s
Α

s 
 − ΣN

r
Α

r
)          (27)

which must be differentiated with respect to all the potentials
in both regions, and also with respect to the Lagrange
multipliers λ

i
. Thus, matrix entries that must be added to (17)

are generated.

Fig. 1. Connection of stator and rotor domains at Γ.

8. Synchronous Machine Finite-Element Model and
Transfer Functions

The design data of a 150 MVA, 13.8 kV, 50 Hz turbine generator
was available, so that it was possible to construct a time-
harmonic finite-element model and obtain its transfer functions
by post-processing of the solution. It is important to mention
that this machine was part of Great Britain’s power network.
The machine geometry is shown in figure 2, where the circular
Lagrange interface can be readily distinguished. This way, it is
possible to put the rotor in any position. Particularly in this
work the rotor has to be positioned such that the stator field is
aligned with the d and q axes. The distribution of the stator
phase conductors can be appreciated in figure 2 as well. Figure
3 depicts the finite-element mesh. Two meshes (one for the
rotor and one for the stator) were constructed with different
densities and coupled at the air gap using Lagrange multipliers
as explained in the previous section. Figure 4 shows a close up
of the air gap, where the coupling interface and the difference in
mesh densities can be seen. A Dirichlet boundary condition
[13] was enforced at the outer diameter of the stator. Since the
magnetic field is periodic, it is only required to model one half of
the full geometry. This periodic condition states that the
magnetic vector potential along any radial line must be exactly
the negative at an angular displacement of π, that is:

A(r,θ) = −A(r,θ + π)                                (28)

Hence, the radial lines, that serve as boundaries of the rotor
and stator geometry (figure 2), are enforced to the periodic
boundary condition.
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The SSFR test [12] requires current excitation at the stator terminals,
so no coupling with external circuits is required. The rotor/field
winding must be open or short circuited, depending on the transfer
function that is to be determined. In the first case there is no need
to consider coupling with external circuitry, whereas the short circuit
condition demands the series connection of the winding resistance
and overhang leakage inductance with the field winding modelled
within the finite element model. This is achieved with the
methodology given in section 5. A constant permeability value,
typical of SSFR testing [28], was used to represent the rotor body.
The unsaturated permeability value of the stator normal BH curve
was used for the stator core [28]. This allows studying the machine
under linear conditions. The armature resistance R

a
 and field winding

resistance R
f
 are assumed to be known parameters from design

data.

The most recent IEEE standard (115-1995 [12]) for performing
the SSFR test specifies the connections shown in figures 5
and 6 to obtain the three transfer functions that fully

characterize the two port network nature of the d axis and to
obtain the transfer function of the q axis. Figure 6 applies to
the q axis when the field winding is rotated 90 degrees. The
transfer functions to be determined are:

 ( )
( )

( )

( )
( )

( )

( )
( )

( )

d
d

d e

fd

d

fd

afo
d

e s
Z s

i s

i s
sG s

i s

e s
Z s

i s

∆

∆

∆
=
∆

∆
=
∆

∆
=
∆

                                 (29)

where ∆e
d
 and ∆i

d
 are the d-axis voltage and current at the machine

terminals of the two-axis transformed machine, whereas. i
fd
 is the

current of the field winding. The ∆ symbol emphasises the fact
that the tests is performed with small excitations of the stator
currents [12], which in turn leads to small values of the induced
voltages and currents of the two port network. s is the Laplace’s
operator and takes the form jω in the frequency domain. Z

d
 is the

d-axis operational impedance. sG(s) is the d-axis stator current to
field current transfer function. Z

af0
 is the armature to field transfer

impedance. The q-axis quadrature operational impedance is
calculated with (29a) when the subscript d is substituted by q.
Since the synchronous machine is modelled in the abc reference
frame, the transfer functions cannot be evaluated directly and an
intermediate impedance and a transfer functions are first
calculated. The actual armature impedance that can be calculated
from the test measurements is:

 
( )

(
armd

armd

armd

V
Z s

i

∆
=
∆                                 (30)

Fig. 2. Machine geometry. One pole pitch.
Fig. 4. Mesh zoom of the air gap region showing the

different mesh densities of the rotor and stator domains.

Fig. 3. Finite element mesh.
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such that the d-axis operational impedance is given by:

 1
( ) (

2d armdZ s Z s=                                      (31)

This armature impedance is divided by 2 because two stator
windings are used to perform the test. An alternative transfer
function that deserves consideration is the d-axis operational
reactance, which is given by the following expression:

 
( )dX s =                                                      (32)

where ω
0
 is nominal angular speed of the machine. This

reactance function can be more conveniently used in the
identification of equivalent circuits instead of the impedance
transfer function [29]. The d-axis stator current to field current
transfer function is calculated with:

 ( )
( )

( )
fd

d

i s
sG s

i s

∆
= =
∆                       (33)

The cos 30° takes account of Park’s transformation from the
abc to the dq frame of reference. Finally, the armature to field
transfer impedance is obtained from:

 ( )
( )

( )
fd

afo
d

e s
Z s

i s

∆
=
∆                       (34)

A convenient operational inductance can be calculated from (34):

 
0

( )afo
af

Z s
X

s
ω

 
=  
 

                                (35)

This reactance is called armature to field transfer reactance
which also facilitates the identification process of equivalent
circuit parameters [29].

Fig. 5. Connections to obtain d-axis transfer functions:
field winding short circuited.

Fig. 7. Magnetic flux density distribution ( ωt = 0º )
at 0.001 Hz.

Fig. 6. Connections to obtain d-axis transfer functions:
field winding open.

Fig. 8. Magnetic flux density distribution ( ωt = 0º ) at 1 Hz.
d-axis excited and field winding short circuited.
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9. Results and Validation

The finite-element model gives values of the magnetic vector
potential at element nodes, whereas currents and voltages
are outputs at nodes of the external circuitry, which have
been interconnected with the field equations. These values
of currents and voltages are those that would be measured
in a real test and they are inputted to the transfer function
expressions of the previous section to evaluate them. The
SSFR test is simulated using a frequency range that goes
from 0.001 to 100 Hz, thus complying with the IEEE standard.
Figures 7 to 14 show the magnetic flux density distribution
obtained from the finite-element solution at different
frequencies for the d and q axes. These figures show how
the magnetic field is expelled from the rotor body as the
frequency is increased. This phenomenon is explained by
the fact that the field and eddy currents are induced in such
way that the stator magnetic field cannot get into the rotor
body. This also conforms to electromagnetic theory results
that state that the penetration of an alternating magnetic

field depends on the frequency and the material conductivity
and permeability [14]. An interesting point of the screening
effect is that at high frequencies the magnitude of the d-axis
operational inductance comes very close to the value of the
stator leakage inductance, because all the stator magnetic
flux is forced to circulate through the slot leakage and air
gap paths (see figures 10 an 14).

Figures 15 to 18 show the calculated phase and magnitude
curves of the d and q axis transfer functions of the machine.
The transfer functions were normalized using the per-unit
system of Adkins [5]. These figures also depict the transfer
functions obtained in [30], which were calculated using a very
different finite-element methodology. The curves labelled as

Fig. 9. Magnetic flux density distribution ( ωt = 0º ) at 10 Hz.
d-axis excited and field winding short circuited.

Fig. 12. Magnetic flux density distribution ( ωt = 0º ) at 1 Hz.
q-axis excited

Fig. 10. Magnetic flux density distribution ( ωt = 0º ) at 100 Hz.
d-axis excited and field winding short circuited.

Fig. 11. Magnetic flux density distribution ( ωt = 0º ) at
0.001 Hz. q-axis excited.
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«old method» refer to these transfer functions. Curves labelled
as «new approach» refer to the techniques described in this
work. It is important to emphasize that the comparison is shown
here since the work of reference [30] was validated and therefore
the new results can in turn be validated as well. Nevertheless,
it is interesting to notice that the finite-element model of [30]
does not model the machine in the abc frame of reference,
requiring of non-existent sinusoidally distributed windings.
Moreover, special knowledge of the non-conventional two-
axis approach of Adkins [5] is required to obtain the machine
transfer functions. Actually, the development of conversion
formulae was necessary to make a proper comparison with the
complying IEEE standard results obtained in this work. It can
be seen that both methods give similar results, but some
discrepancies can be observed in the magnitudes of the
operational reactances. These differences are indeed very
remarkable because they make evident that flux-linkage
harmonics are not taken into consideration in [30] due to the
use of sinusoidally distributed windings. Actual distribution
of stator winding is employed here, so that all harmonics
produced by the machine geometry are properly considered.

Figures 15 to 18 also show some discrepancies of the phase
angles of three transfer functions at high frequencies (bigger
than 60 Hz). These differences are also interesting since they
state that the skin depth was not correctly modelled in [30].
The reason of this assertion resides in the fact that first order
elements and a coarser mesh were used in [30], making the
modelling of the skin depth inaccurate. On the other hand, a
very detailed/refined mesh of the rotor body (see figure 3)
was constructed here at the rotor outer surface. Moreover,
second order hierarchal elements were employed to improve
simulation results.

10. Conclusions

The SSFR response of a synchronous generator was obtained
with efficient and elegant finite-element techniques.
Particularly, a method for the connection of the field and circuit
equations was presented. This approach is based on the nodal
equations of the external circuits and the total current of the
finite-element conductors, such that any circuit and conduc-
tor configuration can be analysed. A very clever use of
Lagrange multipliers has led to the possibility of coupling

Fig. 13. Magnetic flux density distribution ( ωt = 0º )
at 10 Hz. q-axis excited

Fig. 14. Magnetic flux density distribution ( ωt = 0º )
at 100 Hz. q-axis excited

Fig. 15. d-axis operational reactance.

Fig. 16. d-axis stator current to field current transfer
function.
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meshes of different densities, allowing nodes of elements to
fall on sides of other elements. Notice that this is not permitted
by the conventional finite-element theory. This way, it was
possible to create a very dense mesh at the rotor outer surface,
where eddy currents are induced over a small skin depth, while
keeping a coarser mesh for the eddy-current free stator domain.
The finite-element techniques described in this work can also
be used for more general transient simulations. The
determination of the SSFR test was carried out following the
current IEEE standard, without resorting to non-conventional
two-axis approaches or to non-existent sinusoidally distributed
windings. The synchronous machine transfer functions
obtained in this work were validated using proven results of
other work [30], showing numerical superiority due to the use
of second order elements and a better mesh.
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