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Soft-Computing Techniques in the Trajectory
Planning of Multirobot Manipulators Systems (Part I)

1. Abstract

This work is the first of a series of two articles on the
application of soft-computing techniques for the trajectory
planning of multi-robotic systems. In this first article the
motion planning problem of robot manipulators and the
particular case of Multi-movers are defined. A brief
introduction of the basic elements of soft-computing is given,
and the applicability of such elements for the trajectory
planning problem of robot manipulators is discussed. Also,
the artificial potential field method is presented for the
modelling and characterization of obstacles and as a mean of
driving a planner towards the desired goal. A genetic
algorithm (GA) based path is presented to illustrate the
applicability of such techniques for the path planning in a
2D space and a global path planner for planar robot
manipulators is developed based on GA optimisation
considering static obstacles.

2. Resumen (Técnicas de computación inteligente para la planeación
de trayectorias de sistemas con múltiples robots manipuladores)

El trabajo que aquí se presenta es la primera de dos partes
sobre la aplicación de herramientas de computación inteligente
(soft-computing) para la generación de trayectorias de sistemas
multirrobóticos. En esta primera parte se define el problema
de planeación de movimientos de manipuladores robóticos,
en particular el problema de Mult-imovers, donde múltiples
robots se mueven en un espacio de trabajo común. Se da una
breve introducción de los elementos utilizados en la
computación inteligente y se discute su aplicabilidad para la
planeación de trayectorias de sistemas robóticos. El método
del campo de potencial artificial (CPA) se presenta para el
modelado y caracterización de obstáculos, así como para que
el algoritmo planeador de trayectorias siga el gradiente de
descenso de la superficie del CPA hacia el objetivo deseado.
Así mismo, se ilustra la aplicación de un planeador basado en
algoritmos genéticos para un espacio bi-dimensional y se
desarrolla un planeador global basado en optimización
genética para manipuladores planos considerando obstáculos
estáticos en su espacio de trabajo.

Key words: Trajectory planning, soft-computing, genetic
algorithms, fuzzy logic, multiple-manipulators, robotics.

3. Introduction

Ever since the first robot manipulator was installed in 1961
by Devol and Engelberger for General Motors, the planning
and execution of movements has been a key part in the
development of robotic systems and a topic of discussion for
many researchers of various backgrounds.

The planning of the motion of robots has become increasingly
more complex as robots are used in a wide spectrum of
applications, from extremely repetitive tasks in assembly lines
to assistance in delicate surgical procedures [1, 2]. Whichever
the scenario, the planning has to consider the fact that the robot
will be interacting with other elements in its environment, avoiding
collision with other objects while executing a given task.

Systems where robots have to share a common workspace with
other machines, including other robot manipulators, are the
result of the demands of industry, where time, space and
productivity are closely linked with each other. If the volume
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of production is very high and the life cycle of the product is
quite long, the trajectory planning involved in the operations
to manufacture a new product can be performed off-line over a
time span of months. Thereafter, it would only be necessary to
stop the production line to check the accuracy of the planned
trajectories of the robots and adjust accordingly before
restarting the production line. However, in systems where the
volume of production is small to medium-sized, and a single
manufacturing cell has to care for a great variety of products,
the process of trajectory planning for the various products has
to be highly effective to ensure that the time the production
line is off will not affect the final cost of the product. Hence,
there is a demand for algorithms that allow more flexibility in
the system without the need for off-line planning, thus
increasing the productivity of the whole system.

Following this line of thought, we explore the application of
soft-computing techniques to improve the performance of local
trajectory planning. The approach followed to solve this
problem considers that the manipulators have to reach a
specified goal or target defined in coordinates of its workspace,
rather than a goal or target configuration as widely presented
in numerous papers. This is because when the manipulator is
forced to reach a certain configuration, the trajectory planning
problem is greatly simplified by constraining the system to
satisfy those specific values. By specifying the target in
coordinates in the workspace instead, the system can solve for
this condition assuming a number of different solutions, thus,
dealing now with an optimisation problem.

4. Development
4.1. Motion planning

Motion planning for robot manipulators has been extensively
studied during the last two decades by a number of
researchers. A comprehensive survey on the common
techniques used to solve this problem can be found in [4, 6].
Depending on the nature of the problem, some authors
classify the motion planning problem in two categories:
global and local motion planning [6-8].

Global motion planning requires a complete description of
the workspace of the robot where all obstacles are clearly
identified before searching a path. It often takes place on those
systems where the manipulators operate in a highly structured
and controlled environment in which all possible obstacles
are static and known in advance; the planning here is performed
off-line allowing for an optimal trajectory to be found.

In local motion planning, no prior knowledge of the system
is required in terms of possible obstacles in the workspace;
this type of planning has to process information which

describes the vicinity of the manipulator and modifies its
trajectory in order to avoid collision with any obstacle nearby
while minimising the error to the target. Local planners are
commonly used in dynamic environments where limited
information of moving obstacles is available [9-11].

4.2 The Multi-movers problem

When there is more than one robot working in a common
workspace, the planning of motion of such a system is referred to
as the multi-movers problem. The multi-movers problem is that of
finding paths for the robots between their initial and final
configurations whilst avoiding one another as well as any obstacles.

Regarding the motion planning into systems where multiple
robots share the same environment, three approaches can be
identified: the centralized approach, the hierarchical or
prioritized and decoupled planning.

The centralized approach consists of treating the various
robots as if they were one single robot, considers the Cartesian
product of their individual C-spaces called composite C-
space. The forbidden region is the space in which one robot
intersects an obstacle or two robots intersects each other.
Algorithms based on this approach require a great amount of
computational resources to store the resulting information
of the representation of the composite C-space and for solving
the path over this space [12, 13].

The hierarchical or prioritized  approach presented by
Freund and Hoyer [14], plans the motions of the robots
accordingly to a certain priority assigned to each robot
depending on their specified tasks. A common configuration
under this approach in multi-robot arm systems is the Master-
Slave configuration, where the motion of the slave is
dependent on the motion of the master, either to avoid

Fig. 1. Genetic algorithm description.
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collision with the master in pick-and-place like tasks or to
assist in the manipulation of a common object.

In the Decoupled planning the paths for each robot are
planned independently and are later synchronized by
scheduling the robots' motion to ensure that no collision
takes place while executing the desired task. Lee and Lee
[15], use this technique for a system consisting of two
manipulators, where the speed of one of them is fixed while
the speed of the other is modified in order to synchronize the
previously planned paths, obtaining a collision-free
interaction. The collisions here are studied using a
bidimensional graph called "Collision map" where the path
of the second robot is represented against time and collision
regions are identified. The manipulators are modeled by
spheres and the motion of the robots is restricted to straight-
line paths. An extension of this method is presented by Chang
et al. in [16], where the robots are represented as polyhedral
and the minimal delay-time value, necessary  for collision
free coordination, is determined.

Bien and Lee [17], present a method based on decoupled
planning, where the resulting trajectory is collision-free and
time-optimal. This method uses a coordination diagram and
is restricted to systems where only one area of possible
collision is identified. Lee [18],  extends this method to
consider cases where more than one collision region is
identified.

The use of evolutionary techniques in the motion
coordination of two manipulators is explored by Ridao et al.
in [19]. As with other decoupled planning based approaches,
the problem is broken into path planning, where collision-
free paths for the robots are found independently and
considering only fixed obstacles in the workspace, and
trajectory planning where the paths are synchronized to
ensure a collision-free interaction. Here an evolutionary
algorithm gives an initial approximate solution in the C-
space and from this solution a heuristic local search algorithm
consisting of a monotonous random walk is used to find an
optimum solution.

4.3 Soft Computing Techniques

Soft computing is a keyword in information technologies,
and refers to a synthesis of methodologies from fuzzy logic,
neural networks and evolutionary algorithms used to solve
non-linear systems where conventional methods fail to
provide a feasible solution.

As defined by Zadeh [20], "Soft computing differs from
conventional (hard) computing in that, unlike hard
computing, it is tolerant of imprecision, uncertainty and
partial truth. […] At this juncture, the principal constituents
of soft computing (SC) are fuzzy logic (FL), neural network
theory (NN) and probabilistic reasoning (PR), with the latter
subsuming belief networks, genetic algorithms, chaos theory
and parts of learning theory. What is important to note is that
SC is not a melange of FL, NN and PR. Rather; it is a
partnership in which each of the partners contributes a distinct
methodology for addressing problems in its domain. In this
perspective, the principal contributions of FL, NN and PR
are complementary rather than competitive".

4.3.1 Genetic Algorithms

Developed by Holland [21], and further implemented by Goldberg
[22], a genetic algorithm (GA) is a search strategy that mimics the
theory of evolution of life in nature, belonging to the class of
stochastic search methods. The main difference between GA and
other search methods is that, while most stochastic search methods
operate on a single solution to the problem at hand, genetic
algorithms operate on a population of solutions.

For any given problem to be solved by a GA, an initial
population of possible solutions has to be created. These
solutions are coded into Chromosomes of a fixed or variable
length. The coding can be done in any representation although
binary representation is commonly used. Each of the
chromosomes are evaluated and assigned a fitness value
accordingly to a fitness function. The basic operations in a GA
are: Reproduction, Crossover and Mutation. Figure 1 illustrates

Fig. 3. Fuzzy operators.Fig. 2. Fuzzy sets representation.
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the general outline of a genetic algorithm with the common
operations that take place to produce a single offspring.

The reproduction operator allows individual strings to be
copied for possible inclusion in the next generation. The
chance that a string will be copied is based on the string's
fitness value, calculated from the fitness function. For each
generation, the reproduction operator chooses strings that are
placed into a mating pool, which is used as the basis for creating
the next generation. A commonly used mechanism for parent
selection for the reproduction is the roulette-wheel selection.

The crossover refers to the mating of the two strings randomly
selected by "spinning" the selection wheel, resulting in a
new offspring that forms part of the new population; this
operation is performed until a whole new population of the
same size as the original is created.

The mutation operator randomly affects only one allele on
an offspring. The chance of a mutation occurring is defined
by the mutation probability specified in the algorithm. This
operator helps to ensure that "new" individuals are included
in the new population of solutions to be evaluated.

4.3.2 Fuzzy Logic

Proposed by Zadeh [23] and successfully implemented for the
first time by Mamdani [24], fuzzy logic is an extension of
Boolean logic which allows the processing of "vague" or
uncertain information. Classic logical systems based on
Boolean logic classify elements as members or not of a
particular set, while Fuzzy-based systems can establish a degree
of pretence of an element to any given set within a membership
range between [0, 1] (Figure 2), providing a way to identify
and rank an intermediate value. A membership value of zero
indicates that the element is entirely outside the set, whereas a
one indicates that the element lies entirely inside a given set.

Any value between the two extremes indicates a degree of
partial membership to the set.

Fuzzy logic employs the classical set operations of union (OR),
intersection (AND) and complementation (NOT), but their
meaning varies from those in classic logic. These operations
for fuzzy are illustrated in Figure 3 and are defined as:

Union: the union of two fuzzy sets A and B is given by taking the
maximum of the degrees of membership of the elements in A and B.

Intersection: the intersection of two fuzzy sets A and B is
given by taking the minimum of the degrees of membership
of the elements in A and B.

Complement: the complement of a fuzzy set A is obtained by
subtracting the degree of membership of the various elements
in the domain from 1.

Fuzzy logic uses the before mentioned logical operators in
conjunction with «IF <condition> THEN <action>» rules.
For example, a rule to control an air conditioner might say:
«If the room is hot and moist, circulate the air.» However,
unlike Boolean logic, the condition clause does not simply
evaluate to «true» or «false»; it is associated with a «degree»
of truth providing a variable output as a result. In order to
make practical decisions employing fuzzy logic, the
following procedures have to be implemented: fuzzification,
inference, composition and defuzzification.

Fuzzification: establishes the fact base of the fuzzy system.
First, it identifies the input and output of the system.
Fuzzification then defines appropriate IF THEN rules and
uses raw data to derive a membership function.

Inference: as inputs are received by the system, inference
evaluates all IF THEN rules and determines their truth values.
If a given input does not precisely correspond to an IF THEN
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Fig. 5. Multi-layer perceptron.Fig. 4. Artificial neuron.
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rule, then partial matching of the input data is used to
interpolate an answer.

Composition: combines all fuzzy conclusions obtained by
inference into a single conclusion. Different fuzzy rules might
have different conclusions, so it is necessary to consider all rules.

Defuzzification: converts the fuzzy value obtained from
composition into a "crisp" value; this process is often
complex since the resulting fuzzy set might not translate
directly into a crisp value. Defuzzification is necessary, since
controllers of physical systems require discrete signals.

4.3.3. Artificial Neural Networks

Artificial neural networks (ANN), more commonly know as
neural nets, are an attempt to simulate the way in which the
brain interprets and processes information. Based on the early
work presented by McCulloch [25], neural nets have been
adopted in many cases to model nonlinear systems due to
their ability to map nonlinear functions.

A neural net is formed by several interconnected individual
processing units called neurons. A neuron (Figure 4) can
have any number of inputs (x

j
) and the output (y) is given by

sum of the weighted inputs and the activation function.

The values w
1
, w

2
, w

3
, …, w

n
  are weight factors associated

with each node to determine the strength of input row vector
X = [x

1
, x

2
, x

3
, …, x

n
]T. Each input is multiplied by the

associated weight of the neuron connection X
W
. Depending

upon the activation function, if the weight is positive, X
W

commonly excites the node output; whereas, for negative
weights, X

W
 tends to inhibit the node output.

The activation function is a mathematical function that a neuron
uses to produce an output referring to its input value. This input
value has to exceed the specified threshold value that
determines if an output to other neurons should be generated.

The structure of a network is determined by how the
interneuron connections are arranged and the nature of the
connections. How the strengths of the connections are adjusted
or trained to achieve a desired overall behaviour of the network
is governed by its learning algorithm. Neural networks can be
classified according to their structures and learning algorithms.
In terms of their structures, neural networks can be divided
into two types: feedforward networks and recurrent networks.

Feedforward networks can perform a static mapping between an
input space and an output space: the output at a given instant is
a function only of the input at that instant. The most popular

feedforward neural network is the multi-layer perceptron  (MLP):
all signals flow in a single direction from the input to the output
of the network. Figure 5 shows an MLP with three layers: an
input layer, an output layer, and an intermediate or hidden layer.
Neurons in the input layer only act as buffers for distributing the
input signals x

i
 to neurons in the hidden layer. Each neuron j in

the hidden layer operates according to the model of Figure 4.
That is, its output y

j
 is given by:

       ( )
1
 

n

j i i
i

y f X W
=

= Σ                                   (1)

Finally, the outputs of the neurons in the output layer are
computed similarly.

Recurrent networks are networks where the outputs of some
neurons are fed back to the same neurons or to neurons in
layers before them. Thus signals can flow in both forward
and backward directions. Recurrent networks are said to have
a dynamic memory: the output of such networks at a given
instant reflects the current input as well as previous inputs
and outputs. Examples of recurrent networks include the
Hopfield network, the Elman network and the Jordan network.

4.4 Discussion

It can be appreciated that the motion of the elements that
form the kinematic chain of robot manipulators is described
by a system of non-linear equations that relate the motion in
the cartesian space of the end-effector as a consequence of the
individual variations of the links of the manipulator due to the
angular displacements at each joint. When solving for a
particular position of the end-effector in the cartesian space, the
inverse kinematics problem, a set of configurations has to be
calculated to position the tip of the manipulator at that desired
point. Due to the natural dexterity of robot manipulators, the
space of solution is non-linear and multidimensional where more
than a single solution exists to solve a particular point in the
cartesian space and where choosing the appropriate solution
requires an optimisation approach.

Taking this into consideration, the solution of the motion
planning problem of robot manipulators is an ideal candidate
for the use of soft-computing techniques such as genetic
algorithms and fuzzy logic, as both approaches are known to
perform well under multidimensional non-linear spaces
without the need for complex mathematic manipulation to
find a suitable solution [22-28].

4.5 The Potential Field Approach

In order to avoid collisions between manipulators and other
objects present within their workspace it is necessary to
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characterize these possible obstacles in a way that the
information from this representation is of use to prevent any
possible collision. The potential field approach, introduced
by Khatib [29], combines "attractive" and "repulsive"
potential field to model the workspace and the obstacles
therein. Figure 6 illustrates a line obstacle and a goal at
(10,10). As it can be appreciated, the global minimum of this
combined field corresponds to the specified goal.

The attractive potential, Pa, is given by reducing the
Euclidean error to the desired goal, while the repulsive
potential, Po, is given by:

   2 2
x yPo Po Po= +                                       (2)

subject to the following conditions:
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( )

0
if ( )         

0

cos
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DO s r

Po

Po s r OD
r DO s r

Po s r OD

Po m
DO r

Po m

β φ
β φ

φ
φ

=
> +  =
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=
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               (3)

where:
DO = distance to obstacle
s = distance of influence of the potential field of the obstacle
r = distance considered as imminent contact
Po

x
, Po

y
 = x, y components of the potential field vector

β = scaling factor of the potential field for the influence zone
m  =  scaling factor of the potential field for the contact zone
φ = potential field direction

The resulting potential field P is obtained by the
combination of these two potentials by:

     P = Pa + Po                       (4)

This representation provides enough information to guide,
through a search algorithm, a manipulator from a starting point
to a desired final position. However, path planners based on this
representation have to deal with the problem of local minima.
To overcome the local minima problem different approaches
have been suggested for both, the construction of the
potential field and the search algorithm itself. An alternative
in the construction of the potential field is the use of harmonic
functions to build local minima free potential fields as
proposed by Kim and Connolly [30-32]. The drawback of
this approach for its practical implementation of path planners
is that it requires the implementation of an iterative numerical
algorithm for the solution of Laplace’s equation, which
results on a high computational cost.

Another alternative in the construction of the potential field
presented by Vadakkepat in [33], is the use of an
evolutionary algorithm for the optimisation in the
construction of the potential field. This approach starts by
building a potential field using simple expressions, like
those of equation 5, and form this field, a local minima free
potential field is evolved. The size and resolution of the potential
field reflects on the necessary number of generations needed
to obtain an optimal field.

The search algorithms used to navigate a potential field
follow the gradient descent of the field until reaching the
goal. A comprehensive summary of these methods can be
found in [6]. A common characteristic of these methods is
the addition of a procedure to escape local minima.

4.6 Path planning with GA
4.6.1 Real Coded GA for the Path Planning in a 2D space

This algorithm employs Real coding for the chromosomes
which have been chosen to be of variable length.

The algorithm starts by producing a random population of
possible solutions from where an optimal solution is to be
«evolved». The algorithm assigns a fitness value according
to the length and suitability of the path. Parents are selected
and the mating process produces a single offspring path, the
mating process searches for adequate places where the
crossover will take place in order to produce an offspring
whose length is shorten.

Figure 7 illustrates the artificial potential field for the
considered workspace with two circular obstacles at (50,65)
and (70,55) and a goal at (10,10). The path planner has to
find a feasible trajectory, free of collision, starting at any
point in the workspace. In this example the starting position
is located at (95,85). Figure 8 illustrates two possible
solutions; the solid trajectory corresponds to that solved by
the GA path planner while the dashed one corresponds to the
solution obtained from a conventional path planner. As it
can be seen, the trajectory obtained by the traditional
algorithm is longer that the one obtained by the GA planner
as this being an optimal solution, and unlike the conventional
planner, keeps the robot away from the obstacles at all times
rather than following the contour of the obstacles.

Figures in 9a show the evolution of the trajectories and the
nature of the GA can be clearly appreciated. Figure 9a
illustrates the initial population considered by the GA, it can
be seen the wide range of solutions being considered from
where the optimal solution is evolved. Figure 9b shows the
population after 5 generations and Figure 9c illustrates the
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solutions derived after 10 generations. Finally, Figure 9e
illustrates the final solution obtained after only 25 generations
where it can be appreciated that the GA has converged to a
solution, which can be verified on Figure 9f as the fitness
function has become stable throughout the generations.

4.6.2 Implementation on the path planning of Manipulators

Path planning refers to the process of determining the
intermediate positions/configurations of the links of the
manipulator between the start configuration and a
configuration that corresponds with the desired position of
the tip of the manipulator when it reaches a specified goal.
When time is included in this process, the path planning
problem becomes a trajectory planning problem.

For each intermediate position of the manipulator along its
specified path or trajectory, suitable values for the joint
coordinates have to be determined in order to place the tip of
the manipulator at each specified spatial position. This

requires solution of the inverse kinematics at each point along
the path.

Unfortunately, solving the inverse kinematics analytically is
a very time-consuming computational process, because of
the requirement to solve the inverse kinematics for every
point along the path.

Fig. 6. Combined potential field example.
Fig. 8. Path comparison (dashed) conventional

 path planner (solid) GA path planner.

Fig. 9. Generation of paths generated by the GA.

e) 25th generation of paths
generated by the GA

f) Average fitness of the GA

c) 10th generation of paths
generated by the GA

a) First25th generation of paths
generated by the GA

b) Fifth generation of paths
generated by the GA

d) 15th generation of paths
generated by the GA

Fig. 7. Potential field two obstacles and a goal at (10,10).
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A GA is very attractive for path planning because it can
determine suitable angular increments of the manipulator
joints, without requiring analytic solution of the inverse
kinematic model. The GA optimises the search for suitable
configurations by reducing the end-effector error in the
workspace defined in the fitness function of the GA.

The initial population of the GA is coded to represent a
positive, a negative and a null displacement of the joint
variables from their start configurations using a ternary
representation. The step size is chosen to be of 1° and the
chromosome length is set to be variable. Figure 10 illustrates
the structure of the chromosome based on the described coding
where 1 implies a positive displacement of the joint set equal
to the determined step size, 2 indicates a negative displacement
and, finally, 0 indicates a null displacement. The chromosome
is arranged so that, for the case of a 2dof, every pair of alleles
correspond to particular joint values that drive the manipulator
to the desired goal from set 1 to set n. The GA evaluates multiple
trajectories as each and every chromosome in the initial
population pool represents a different and unique solution
(trajectory) from where the best solution is derived.

The fitness function is given by:

1

1
n i

nerror error
i

f
e e

=

=
+∑                              (5)

where:

( ) ( )2 2

n f n f nerror x x y y= − + −                 (6)

and: ( ) ( )
( ) ( )

1 1 2 1 2

1 1 2 1 2

cos cos

sin sin
n n n n

n n n n

x l l

y l l

θ θ θ

θ θ θ

= + +

= + +                                          (7)

(x
f
, y

f
) = goal coordinates

As it was mention above each chromosome represents a series
of joint displacements. The resolution of the GA can be defined
to make the step size ∆θ equal to the minimum displacement to
be considered per time unit and restricted to a maximum value.
For illustrative purposes the step size considered in these
examples is fixed to ±1° including 0° to represent no displacement
of a joint. A ternary representation is used for coding the
chromosomes, if the resolution of the GA is to be changed the
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coding of the chromosomes will have to reflect it. For example
if the minimum ∆θ to be considered is equal to 0.5°, and the
maximum is equal to 5° it would be necessary to use a base 21
numeric representation to code the chromosomes to include all
possible positive and negative values. Figure 11 illustrates the
path planner algorithm.

The initial length of the chromosomes is established according
to the complexity of the problem. For the simple case of path
planning in a workspace free of obstacles illustrated in Figure
17, where the 2 dof manipulator starts in an initial configuration
(0°, 0°) and has a goal at (0.1, 0.01), the length of the chromosome
is set to 500 elements or 250 sets of ∆θ. For this example, an
initial population of 200 chromosomes is considered.

Figures in 12 show the manipulator moving along the
trajectory solved by the planner. The final length of the
chromosome containing the illustrated solution is 356 alleles
or 178 sets of ∆θ, which describe the trajectory of the
manipulator from its starting configuration to the desired goal
of the tip in the workspace. For this example, the time of solution
after 100 generations was 87 seconds. Figure 12f shows the
average fitness of the population along the generations. It can
clearly be appreciated that the average fitness improved until
the manipulator reached the maximum number of generations.

For the case of obstacles present in the workspace, the
potential field approach defined earlier is used to characterise
them. The fitness function of the GA is defined as a multi-

Fig. 10. Chromosome structure.

Fig. 11. GA based global path planning algorithm.

∆θ’s  [  1  1     2  0     0 1     2 2    ...    0 0  ]

(∆θ1,∆θ2)1 (∆θ1,∆θ2)2 (∆θ1,∆θ2)3 (∆θ1,∆θ2)4 ... (∆θ1,∆θ2)n

start

Initial configuration
goal in workspace

Create initial
population

Evaluate initial
fitness

Create new population
based on fitness

Evaluate new
fitness

Average fitness
stable for 10gen or
max gen reached

yes
end

no
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objective function, where the total length of the path, the
error of the manipulator to its goal throughout the path and
the value of the potential field to ensure that the path is free
of collisions, are considered. In equation 8 the multi-objective
fitness function is defined as:

          ( )1 1

1
n ni

n i ii i

f
error e error Po

= =

=
+∑ ∑                     (8)

where:

   

        total number of 's sets
  Euclidean error to the goal

      Potential Field caused by obstacle

n
error
Po

θ= ∆
=
=

Equation 8 corresponds to the fitness function for the search
of the goal defined by the combined potential functions of
the goal and obstacles present in the workspace of the
manipulator. The accumulated error is considered as well in
order to optimise the length of the paths, as the algorithm
returns the path with the lowest accumulated error, i.e. the
shortest path among the possible solutions considered by
the GA during its execution.

The initial length of the chromosomes in the population
determines the maximum length of the path described by the
manipulator. As the initial population is randomly generated,

the initially described paths could take the manipulator
towards obstacles or away from the goal when the chromosomes
are evaluated. As each chromosome is evaluated, those paths
that drive the manipulator closer to the goal as a whole and are
free from collision are considered as potential parents
accordingly to their fitness. If the initial size of the
chromosomes is set to 100 alleles and during the evolution
and evaluation of possible solutions a particular chromosome
reaches the desired goal as a result of the displacements
described on the first 70 alleles, the rest of the chromosome is
ignored and the length of the chromosomes in the population
for the following generation is reduced to that of the shortest
described path. This mechanism is referred to as a Chromosome
Length Reduction Mechanism (CLRM). As the length of the
chromosomes in the population is reduced, as a result of the
aforementioned mechanisms, the number of operations
involved in the process of decoding the Chromosomes for the
evaluation of the fitness is reduced, thus reducing the time
required by the algorithm to produce a solution.

The example illustrated in Figure 13 shows a 2 dof manipulator
with an initial configuration close to a line obstacle and a goal
is set at (1.8, 0.5). It also shows the evolution of the solution
from the GA illustrating the best path obtained after 1, 15, 30
and finally after 75 generations for an initial population of
500 chromosomes with a length of 800 alleles. The path
obtained after 75 generations is given by a chromosome with
a final length of 438 alleles. Figure 14 shows the final path
obtained after 18 generations and some best paths obtained in
intermediate generations to illustrate the evolution of the
solution. Figures in 15 show the manipulator along the obtained
path for case I, while Figure 16 shows the average fitness and
the fitness of the best solution for each generation.

This approach can be extended to consider a greater number
of degrees of freedom in the system by simply modifying the
chromosome structure presented in Figure 15 to include an
m number of ∆θ’s as illustrated in Figure 18.

By increasing the number of variables in the system, the
length of the chromosomes also increases and it is necessary
to increase the size of the initial population to ensure that a
suitable solution is found.

Figures 16 and 17 present a 3dof manipulator and three static
obstacles in the workspace. Figure 16 illustrates the final
path (solid) obtained by the global path planning algorithm
and an intermediate path obtained in an earlier generation
(dashed). The initial configuration of the manipulator is at
(−90°,0°,0°) and its goal at (1.9, 0.25). The initial size of the
chromosomes in the initial population for this case was set to
1200 alleles and the final size of the best path obtained was

Fig. 12. Snapshot and averages fitness.

a) Initial position of the 2 dof
robot manipulator

b) Snapshot 2 dof robot
manipulator

c) Snapshot of the 2 dof
robot manipulator

d) Snapshot of the 2 dof
robot manipulator

e) Snapshot of the 2 dof
robot manipulator at its goal

f) Average fitness
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212 alleles after 850 generations and 3 562 seconds, with an
initial population of 500 chromosomes.

Figure 31 illustrates the same system for an initial configuration
at (−31°, 61°, −31°) and same goal. The final path is described
in a 366 alleles string obtained after 837 generations.

Tables 1 and 2 summarize the performance of the GA global
planner for robot manipulators with variations in the initial
chromosome length and in the size of the initial population.
The algorithm returns the best path found after the average
fitness of the population has become stable and the fitness of
the best candidate solution has remained the same for the
last 10 generations. The results reported were obtained using
a PC with a Pentium IV processor at 1.8 GHz.

The performance of the global path planner indicates that the
chromosome length reduction mechanism improves the
performance in terms of required time of solution. The effect of
the mechanism has a greater impact when the initial length of
the chromosome and the size of the population are increased.

From tables 1 and 2, it can also be observed that the required
number of generations to obtain a suitable path is related to the
size and length of the initial population. When a large population
is considered, the required number of generations decreases as
more possible solutions are evaluated per generation. When the
length of the chromosomes is reduced the necessary number of
generations to obtain a path decreases as a set of configurations
that drive the manipulator to the goal is to be evolved considering
a reduced number of joint displacements.

5. Conclusions

This paper has introduced the necessary concepts to
understand the trajectory planning problem of robot

Fig. 13. Robot manipulator and paths obtained
at different generation case I.

Fig. 14. Robot manipulator and paths obtained at different
generations case II.

a) Snapshot manipulator
avoiding collision with the

line obstacle

b) Snapshot manipulator
avoiding collide with the line
obstacle following trajectory

from the GA planner

c) Manipulator at its goal
position  (1.8,0.5)

d) Fitness throughout
generations

Fig. 15. Snapshot and average fitness.

Fig. 16. Robot manipulator and paths obtained at different
generations Case I.
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manipulators as well as soft-computing techniques. A GA
based global path planner has been proposed for the solution
of the problem in the workspace of a robot manipulator.
Solving the problem directly in the workspace of the
manipulator eliminates the process of mapping the obstacles
into the C-space, thus reducing the time involved in the path
planning process. The algorithm implements a Chromosome
Reduction Mechanism to improve the search performance
which results in both a decrement in the number of
generations needed by the algorithm to return a suitable path
and a reduction in the overall time of execution of the planner.
Since the final length of the path that drives a manipulator
from its starting configuration to its desired goal its unknown,
it is not possible to specify the length of the Chromosomes in
the initial population of the GA to find a suitable path, being
necessary to set the length of the Chromosome arbitrarily. The
implementation of the CLRM has proven to optimize the search
capabilities of the GA for this particular implementation of
path planning, as it allows the initial consideration of a large
set of joint displacements that describe a random path of the
manipulator and then, once the algorithm finds paths that reach
the desired goal, the CLRM reduces the length of the
Chromosomes of the following generation. The variation of
the initial population size considered by the algorithm affects
the number of generations required by the planner to return a
feasible path, as can be seen in tables 1 and 2.

The simulation results for the algorithm extended to the case
of a 3dof planar manipulator with 3 static obstacles indicate
that, when the layout of the obstacles constrains the possible
path to be described by the tip of the manipulator, the algorithm
requires an increased number of generations to produce a path
when compared to the number of generations required for the
case of a 2 dof manipulator with one static obstacle.

Even though a considerable drop in the execution time was
achieved in searching for a suitable path by the implementation
of the CLRM, the overall execution time of the planner is not
yet suitable for an implementation in real systems. The path
obtained is affected by the imposed constraint for the values
of ∆θ = ±1° resulting in jerky movements of the tip of the
manipulator along the described path.

The work presented in this first part, shows that the
performance of the GA based global path planner is not yet
ideal. In the second part to follow, the implementation of a
GA based local path planer for robot manipulators is explored,
where static and dynamic environments when robot
manipulators share a common workspace are considered.
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